On decomposability of finite groups
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 827-837 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a finite group. A normal subgroup $N$ of $G$ is a union of several $G$-conjugacy classes, and it is called $n$-decomposable in $G$ if it is a union of $n$ distinct $G$-conjugacy classes. In this paper, we first classify finite non-perfect groups satisfying the condition that the numbers of conjugacy classes contained in its non-trivial normal subgroups are two consecutive positive integers, and we later prove that there is no non-perfect group such that the numbers of conjugacy classes contained in its non-trivial normal subgroups are 2, 3, 4 and 5.
Let $G$ be a finite group. A normal subgroup $N$ of $G$ is a union of several $G$-conjugacy classes, and it is called $n$-decomposable in $G$ if it is a union of $n$ distinct $G$-conjugacy classes. In this paper, we first classify finite non-perfect groups satisfying the condition that the numbers of conjugacy classes contained in its non-trivial normal subgroups are two consecutive positive integers, and we later prove that there is no non-perfect group such that the numbers of conjugacy classes contained in its non-trivial normal subgroups are 2, 3, 4 and 5.
DOI : 10.21136/CMJ.2017.0197-16
Classification : 20D10, 20E45
Keywords: non-perfect group; $G$-conjugacy class; $n$-decomposable group
@article{10_21136_CMJ_2017_0197_16,
     author = {Chen, Ruifang and Zhao, Xianhe},
     title = {On decomposability of finite groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {827--837},
     year = {2017},
     volume = {67},
     number = {3},
     doi = {10.21136/CMJ.2017.0197-16},
     mrnumber = {3697920},
     zbl = {06770134},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0197-16/}
}
TY  - JOUR
AU  - Chen, Ruifang
AU  - Zhao, Xianhe
TI  - On decomposability of finite groups
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 827
EP  - 837
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0197-16/
DO  - 10.21136/CMJ.2017.0197-16
LA  - en
ID  - 10_21136_CMJ_2017_0197_16
ER  - 
%0 Journal Article
%A Chen, Ruifang
%A Zhao, Xianhe
%T On decomposability of finite groups
%J Czechoslovak Mathematical Journal
%D 2017
%P 827-837
%V 67
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0197-16/
%R 10.21136/CMJ.2017.0197-16
%G en
%F 10_21136_CMJ_2017_0197_16
Chen, Ruifang; Zhao, Xianhe. On decomposability of finite groups. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 827-837. doi: 10.21136/CMJ.2017.0197-16

[1] Ashrafi, A. R.: On decomposability of finite groups. J. Korean Math. Soc. 41 (2004), 479-487. | DOI | MR | JFM

[2] Ashrafi, A. R., Sahraei, H.: On finite groups whose every normal subgroup is a union of the same number of conjugacy classes. Vietnam J. Math. 30 (2002), 289-294. | MR | JFM

[3] Ashrafi, A. R., Venkataraman, G.: On finite groups whose every proper normal subgroup is a union of a given number of conjugacy classes. Proc. Indian Acad. Sci., Math. Sci. 114 (2004), 217-224. | DOI | MR | JFM

[4] Gorenstein, D.: Finite Groups. Chelsea Publishing Company, New York (1980). | MR | JFM

[5] Guo, X., Chen, R.: On finite $X$-decomposable groups for $X=\{1, 2, 3, 4\}$. Bull. Iranian Math. Soc. 40 (2014), 1243-1262. | MR | JFM

[6] Guo, X. Y., Li, J., Shum, K. P.: On finite $X$-decomposable groups for $X=\{1, 2, 4\}$. Sib. Math. J. 53 (2012), 444-449 translation from\global\questionmarktrue Sib. Mat. Zh. 53 558-565 2012. | DOI | MR | JFM

[7] Isaacs, I. M.: Character Theory of Finite Groups. Dover Publications, New York (1994). | MR | JFM

[8] Riese, U., Shahabi, M. A.: Subgroups which are the union of four conjugacy classes. Commun. Algebra 29 (2001), 695-701. | DOI | MR | JFM

[9] Rose, H. E.: A Course on Finite Groups. Universitext, Springer, London (2009). | DOI | MR | JFM

[10] Shi, W. J.: A class of special minimal normal subgroups. J. Southwest Teachers College 9 (1984), 9-13 Chinese.

[11] Wang, J.: A special class of normal subgroups. J. Chengdu Univ. Sci. Technol. 1987 (1987), 115-119 Chinese. English summary. | MR | JFM

Cité par Sources :