Keywords: non-perfect group; $G$-conjugacy class; $n$-decomposable group
@article{10_21136_CMJ_2017_0197_16,
author = {Chen, Ruifang and Zhao, Xianhe},
title = {On decomposability of finite groups},
journal = {Czechoslovak Mathematical Journal},
pages = {827--837},
year = {2017},
volume = {67},
number = {3},
doi = {10.21136/CMJ.2017.0197-16},
mrnumber = {3697920},
zbl = {06770134},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0197-16/}
}
TY - JOUR AU - Chen, Ruifang AU - Zhao, Xianhe TI - On decomposability of finite groups JO - Czechoslovak Mathematical Journal PY - 2017 SP - 827 EP - 837 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0197-16/ DO - 10.21136/CMJ.2017.0197-16 LA - en ID - 10_21136_CMJ_2017_0197_16 ER -
Chen, Ruifang; Zhao, Xianhe. On decomposability of finite groups. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 827-837. doi: 10.21136/CMJ.2017.0197-16
[1] Ashrafi, A. R.: On decomposability of finite groups. J. Korean Math. Soc. 41 (2004), 479-487. | DOI | MR | JFM
[2] Ashrafi, A. R., Sahraei, H.: On finite groups whose every normal subgroup is a union of the same number of conjugacy classes. Vietnam J. Math. 30 (2002), 289-294. | MR | JFM
[3] Ashrafi, A. R., Venkataraman, G.: On finite groups whose every proper normal subgroup is a union of a given number of conjugacy classes. Proc. Indian Acad. Sci., Math. Sci. 114 (2004), 217-224. | DOI | MR | JFM
[4] Gorenstein, D.: Finite Groups. Chelsea Publishing Company, New York (1980). | MR | JFM
[5] Guo, X., Chen, R.: On finite $X$-decomposable groups for $X=\{1, 2, 3, 4\}$. Bull. Iranian Math. Soc. 40 (2014), 1243-1262. | MR | JFM
[6] Guo, X. Y., Li, J., Shum, K. P.: On finite $X$-decomposable groups for $X=\{1, 2, 4\}$. Sib. Math. J. 53 (2012), 444-449 translation from\global\questionmarktrue Sib. Mat. Zh. 53 558-565 2012. | DOI | MR | JFM
[7] Isaacs, I. M.: Character Theory of Finite Groups. Dover Publications, New York (1994). | MR | JFM
[8] Riese, U., Shahabi, M. A.: Subgroups which are the union of four conjugacy classes. Commun. Algebra 29 (2001), 695-701. | DOI | MR | JFM
[9] Rose, H. E.: A Course on Finite Groups. Universitext, Springer, London (2009). | DOI | MR | JFM
[10] Shi, W. J.: A class of special minimal normal subgroups. J. Southwest Teachers College 9 (1984), 9-13 Chinese.
[11] Wang, J.: A special class of normal subgroups. J. Chengdu Univ. Sci. Technol. 1987 (1987), 115-119 Chinese. English summary. | MR | JFM
Cité par Sources :