Characterizing projective general unitary groups ${\rm PGU}_3(q^2)$ by their complex group algebras
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 819-826 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a finite group. Let $X_1(G)$ be the first column of the ordinary character table of $G$. We will show that if $X_1(G)=X_1({\rm PGU}_3(q^2))$, then $G \cong {\rm PGU}_3(q^2)$. As a consequence, we show that the projective general unitary groups ${\rm PGU}_3(q^2)$ are uniquely determined by the structure of their complex group algebras.
Let $G$ be a finite group. Let $X_1(G)$ be the first column of the ordinary character table of $G$. We will show that if $X_1(G)=X_1({\rm PGU}_3(q^2))$, then $G \cong {\rm PGU}_3(q^2)$. As a consequence, we show that the projective general unitary groups ${\rm PGU}_3(q^2)$ are uniquely determined by the structure of their complex group algebras.
DOI : 10.21136/CMJ.2017.0194-16
Classification : 20C15, 20G40
Keywords: character degree; complex group algebra; projective general unitary group
@article{10_21136_CMJ_2017_0194_16,
     author = {Shirjian, Farrokh and Iranmanesh, Ali},
     title = {Characterizing projective general unitary groups ${\rm PGU}_3(q^2)$ by their complex group algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {819--826},
     year = {2017},
     volume = {67},
     number = {3},
     doi = {10.21136/CMJ.2017.0194-16},
     mrnumber = {3697919},
     zbl = {06770133},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0194-16/}
}
TY  - JOUR
AU  - Shirjian, Farrokh
AU  - Iranmanesh, Ali
TI  - Characterizing projective general unitary groups ${\rm PGU}_3(q^2)$ by their complex group algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 819
EP  - 826
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0194-16/
DO  - 10.21136/CMJ.2017.0194-16
LA  - en
ID  - 10_21136_CMJ_2017_0194_16
ER  - 
%0 Journal Article
%A Shirjian, Farrokh
%A Iranmanesh, Ali
%T Characterizing projective general unitary groups ${\rm PGU}_3(q^2)$ by their complex group algebras
%J Czechoslovak Mathematical Journal
%D 2017
%P 819-826
%V 67
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0194-16/
%R 10.21136/CMJ.2017.0194-16
%G en
%F 10_21136_CMJ_2017_0194_16
Shirjian, Farrokh; Iranmanesh, Ali. Characterizing projective general unitary groups ${\rm PGU}_3(q^2)$ by their complex group algebras. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 819-826. doi: 10.21136/CMJ.2017.0194-16

[1] Berkovich, Y. G., Zhmud', E. M.: Characters of Finite Groups. Part 1. Translations of Mathematical Monographs 172, American Mathematical Society, Providence (1998). | MR | JFM

[2] Bessenrodt, C., Nguyen, H. N., Olsson, J. B., Tong-Viet, H. P.: Complex group algebras of the double covers of the symmetric and alternating groups. Algebra Number Theory 9 (2015), 601-628. | DOI | MR | JFM

[3] Brauer, R.: Representations of finite groups. Lect. Modern Math. 1 (1963), 133-175. | MR | JFM

[4] Carter, R. W.: Finite Groups of Lie Type. Conjugacy Classes and Complex Characters. Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Chichester (1993). | MR | JFM

[5] Dolfi, S., Navarro, G., Tiep, P. H.: Primes dividing the degrees of the real characters. Math. Z. 259 (2008), 755-774. | DOI | MR | JFM

[6] Gorenstein, D., Lyons, R., Solomon, R.: The Classification of the Finite Simple Groups. Part I. Chapter A: Almost Simple $K$-Groups. Mathematical Surveys and Monographs 40, American Mathematical Society, Providence (1998). | MR | JFM

[7] Heydari, S., Ahanjideh, N.: A characterization of $ PGL(2,p^n)$ by some irreducible complex character degrees. Publ. Inst. Math., Nouv. Sér. 99 (2016), 257-264. | DOI | MR | JFM

[8] Huppert, B.: Some simple groups, which are determined by the set of their character degrees III. Preprint. | MR

[9] Kimmerle, W.: Group rings of finite simple groups. Resen. Inst. Mat. Estat. Univ. São Paulo 5 (2002), 261-278. | MR | JFM

[10] Lewis, M. L.: Solvable groups whose degree graphs have two connected components. J. Group Theory 4 (2001), 255-275. | DOI | MR | JFM

[11] Lübeck, F.: Data for finite groups of Lie type and related algebraic groups. Available at http://www.math.rwth-aachen.de/$\sim$Frank.Luebeck/chev/index.html

[12] Malle, G., Testerman, D.: Linear Algebraic Groups and Finite groups of Lie Type. Cambridge Studies in Advanced Mathematics 133, Cambridge University Press, Cambridge (2011). | DOI | MR | JFM

[13] Meng, Q., Zeng, J.: Finite groups whose character degree graphs are empty graphs. Algebra Colloq. 20 (2013), 75-80. | DOI | MR | JFM

[14] Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra. Stuttgarter Mathematische Berichte (2011), German Available at http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-007.pdf

[15] Nguyen, H. N.: Quasisimple classical groups and their complex group algebras. Isr. J. Math. 195 (2013), 973-998. | DOI | MR | JFM

[16] Nguyen, H. N., Tong-Viet, H. P.: Characterizing finite quasisimple groups by their complex group algebras. Algebr. Represent. Theory 17 (2014), 305-320. | DOI | MR | JFM

[17] Shirjian, F., Iranmanesh, A.: Complex group algebras of almost simple groups with socle $PSL_n(q)$. To appear in Commun. Algebra. | DOI

[18] Simpson, W. A., Frame, J. S.: The character tables for $ SL(3,q)$, $ SU(3,q^2)$, $ PSL(3,q)$, $ PSU(3,q^2)$. Can. J. Math. 25 (1973), 486-494. | DOI | MR | JFM

[19] Tong-Viet, H. P.: Symmetric groups are determined by their character degrees. J. Algebra 334 (2011), 275-284. | DOI | MR | JFM

[20] Tong-Viet, H. P.: Alternating and sporadic simple groups are determined by their character degrees. Algebr. Represent. Theory 15 (2012), 379-389. | DOI | MR | JFM

[21] Tong-Viet, H. P.: Simple classical groups of Lie type are determined by their character degrees. J. Algebra 357 (2012), 61-68. | DOI | MR | JFM

[22] Tong-Viet, H. P.: Simple exceptional groups of Lie type are determined by their character degrees. Monatsh. Math. 166 (2012), 559-577. | DOI | MR | JFM

[23] Wakefield, T. P.: Verifying Huppert's conjecture for $ PSL_3(q)$ and $ PSU_3(q^2)$. Commun. Algebra 37 (2009), 2887-2906. | DOI | MR | JFM

[24] Zsigmondy, K.: On the theory of power residues. Monatsh. Math. Phys. 3 (1892), 265-284 German \99999JFM99999 24.0176.02. | DOI | MR

Cité par Sources :