On soluble groups of module automorphisms of finite rank
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 809-818 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a commutative ring, $M$ an $R$-module and $G$ a group of $R$-automorphisms of $M$, usually with some sort of rank restriction on $G$. We study the transfer of hypotheses between $M/C_{M}(G)$ and $[M,G]$ such as Noetherian or having finite composition length. In this we extend recent work of Dixon, Kurdachenko and Otal and of Kurdachenko, Subbotin and Chupordia. For example, suppose $[M,G]$ is $R$-Noetherian. If $G$ has finite rank, then $M/C_{M}(G)$ also is $R$-Noetherian. Further, if $[M,G]$ is $R$-Noetherian and if only certain abelian sections of $G$ have finite rank, then $G$ has finite rank and is soluble-by-finite. If $M/C_{M}(G)$ is $R$-Noetherian and $G$ has finite rank, then $[M,G]$ need not be $R$-Noetherian.
Let $R$ be a commutative ring, $M$ an $R$-module and $G$ a group of $R$-automorphisms of $M$, usually with some sort of rank restriction on $G$. We study the transfer of hypotheses between $M/C_{M}(G)$ and $[M,G]$ such as Noetherian or having finite composition length. In this we extend recent work of Dixon, Kurdachenko and Otal and of Kurdachenko, Subbotin and Chupordia. For example, suppose $[M,G]$ is $R$-Noetherian. If $G$ has finite rank, then $M/C_{M}(G)$ also is $R$-Noetherian. Further, if $[M,G]$ is $R$-Noetherian and if only certain abelian sections of $G$ have finite rank, then $G$ has finite rank and is soluble-by-finite. If $M/C_{M}(G)$ is $R$-Noetherian and $G$ has finite rank, then $[M,G]$ need not be $R$-Noetherian.
DOI : 10.21136/CMJ.2017.0193-16
Classification : 13E05, 20C07, 20F16, 20H99
Keywords: soluble group; finite rank; module automorphisms; Noetherian module over commutative ring
@article{10_21136_CMJ_2017_0193_16,
     author = {Wehrfritz, Bertram A. F.},
     title = {On soluble groups of module automorphisms of finite rank},
     journal = {Czechoslovak Mathematical Journal},
     pages = {809--818},
     year = {2017},
     volume = {67},
     number = {3},
     doi = {10.21136/CMJ.2017.0193-16},
     mrnumber = {3697918},
     zbl = {06770132},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0193-16/}
}
TY  - JOUR
AU  - Wehrfritz, Bertram A. F.
TI  - On soluble groups of module automorphisms of finite rank
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 809
EP  - 818
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0193-16/
DO  - 10.21136/CMJ.2017.0193-16
LA  - en
ID  - 10_21136_CMJ_2017_0193_16
ER  - 
%0 Journal Article
%A Wehrfritz, Bertram A. F.
%T On soluble groups of module automorphisms of finite rank
%J Czechoslovak Mathematical Journal
%D 2017
%P 809-818
%V 67
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0193-16/
%R 10.21136/CMJ.2017.0193-16
%G en
%F 10_21136_CMJ_2017_0193_16
Wehrfritz, Bertram A. F. On soluble groups of module automorphisms of finite rank. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 809-818. doi: 10.21136/CMJ.2017.0193-16

[1] Brauer, R., Feit, W.: An analogue of Jordan's theorem in characteristic $p$. Ann. Math. (2) 84 (1966), 119-131. | DOI | MR | JFM

[2] Dixon, M. R., Kurdachenko, L. A., Otal, J.: Linear analogues of theorems of Schur, Baer and Hall. Int. J. Group Theory 2 (2013), 79-89. | MR | JFM

[3] Kurdachenko, L. A., Subbotin, I. Ya., Chupordia, V. A.: On the relations between the central factor-module and the derived submodule in modules over group rings. Commentat. Math. Univ. Carol. 56 (2015), 433-445. | DOI | MR | JFM

[4] McConnell, J. C., Robson, J. C.: Noncommutative Noetherian Rings. With the Cooperation of L. W. Small. Pure and Applied Mathematics. A Wiley-Interscience Publication, John Wiley & Sons, Chichester (1987). | MR | JFM

[5] Wehrfritz, B. A. F.: Infinite Linear Groups. An Account of the Group-Theoretic Properties of Infinite Groups of Matrices. Ergebnisse der Mathematik und ihrer Grenzgebiete 76, Springer, Berlin (1973). | DOI | MR | JFM

[6] Wehrfritz, B. A. F.: Automorphism groups of Noetherian modules over commutative rings. Arch. Math. 27 (1976), 276-281. | DOI | MR | JFM

[7] Wehrfritz, B. A. F.: On the Lie-Kolchin-Mal'cev theorem. J. Aust. Math. Soc., Ser. A 26 (1978), 270-276. | DOI | MR | JFM

[8] Wehrfritz, B. A. F.: Lectures around Complete Local Rings. Queen Mary College Mathematics Notes, London (1979). | MR

[9] Wehrfritz, B. A. F.: Group and Ring Theoretic Properties of Polycyclic Groups. Algebra and Applications 10, Springer, Dordrecht (2009). | DOI | MR | JFM

Cité par Sources :