On soluble groups of module automorphisms of finite rank
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 809-818
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ be a commutative ring, $M$ an $R$-module and $G$ a group of $R$-automorphisms of $M$, usually with some sort of rank restriction on $G$. We study the transfer of hypotheses between $M/C_{M}(G)$ and $[M,G]$ such as Noetherian or having finite composition length. In this we extend recent work of Dixon, Kurdachenko and Otal and of Kurdachenko, Subbotin and Chupordia. For example, suppose $[M,G]$ is $R$-Noetherian. If $G$ has finite rank, then $M/C_{M}(G)$ also is $R$-Noetherian. Further, if $[M,G]$ is $R$-Noetherian and if only certain abelian sections of $G$ have finite rank, then $G$ has finite rank and is soluble-by-finite. If $M/C_{M}(G)$ is $R$-Noetherian and $G$ has finite rank, then $[M,G]$ need not be $R$-Noetherian.
DOI :
10.21136/CMJ.2017.0193-16
Classification :
13E05, 20C07, 20F16, 20H99
Keywords: soluble group; finite rank; module automorphisms; Noetherian module over commutative ring
Keywords: soluble group; finite rank; module automorphisms; Noetherian module over commutative ring
@article{10_21136_CMJ_2017_0193_16,
author = {Wehrfritz, Bertram A. F.},
title = {On soluble groups of module automorphisms of finite rank},
journal = {Czechoslovak Mathematical Journal},
pages = {809--818},
publisher = {mathdoc},
volume = {67},
number = {3},
year = {2017},
doi = {10.21136/CMJ.2017.0193-16},
mrnumber = {3697918},
zbl = {06770132},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0193-16/}
}
TY - JOUR AU - Wehrfritz, Bertram A. F. TI - On soluble groups of module automorphisms of finite rank JO - Czechoslovak Mathematical Journal PY - 2017 SP - 809 EP - 818 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0193-16/ DO - 10.21136/CMJ.2017.0193-16 LA - en ID - 10_21136_CMJ_2017_0193_16 ER -
%0 Journal Article %A Wehrfritz, Bertram A. F. %T On soluble groups of module automorphisms of finite rank %J Czechoslovak Mathematical Journal %D 2017 %P 809-818 %V 67 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0193-16/ %R 10.21136/CMJ.2017.0193-16 %G en %F 10_21136_CMJ_2017_0193_16
Wehrfritz, Bertram A. F. On soluble groups of module automorphisms of finite rank. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 809-818. doi: 10.21136/CMJ.2017.0193-16
Cité par Sources :