Keywords: super Dunkl-Dirac operator; Stokes formula; Cauchy-Pompeiu integral formula; Morera's theorem; Painlevé theorem
@article{10_21136_CMJ_2017_0187_16,
author = {Yuan, Hongfen},
title = {A {Cauchy-Pompeiu} formula in super {Dunkl-Clifford} analysis},
journal = {Czechoslovak Mathematical Journal},
pages = {795--808},
year = {2017},
volume = {67},
number = {3},
doi = {10.21136/CMJ.2017.0187-16},
mrnumber = {3697917},
zbl = {06770131},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0187-16/}
}
TY - JOUR AU - Yuan, Hongfen TI - A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis JO - Czechoslovak Mathematical Journal PY - 2017 SP - 795 EP - 808 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0187-16/ DO - 10.21136/CMJ.2017.0187-16 LA - en ID - 10_21136_CMJ_2017_0187_16 ER -
Yuan, Hongfen. A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 795-808. doi: 10.21136/CMJ.2017.0187-16
[1] Bernardes, G., Cerejeiras, P., Kähler, U.: Fischer decomposition and Cauchy kernel for Dunkl-Dirac operators. Adv. Appl. Clifford Algebr. 19 (2009), 163-171. | DOI | MR | JFM
[2] Cerejeiras, P., Kähler, U., Ren, G.: Clifford analysis for finite reflection groups. Complex Var. Elliptic Equ. 51 (2006), 487-495. | DOI | MR | JFM
[3] Coulembier, K., Bie, H. De, Sommen, F.: Integration in superspace using distribution theory. J. Phys. A, Math. Theor. 42 (2009), Article ID 395206, 23 pages. | DOI | MR | JFM
[4] Bie, H. De, Schepper, N. De: Clifford-Gegenbauer polynomials related to the Dunkl Dirac operator. Bull. Belg. Math. Soc.-Simon Stevin 18 (2011), 193-214. | DOI | MR | JFM
[5] Bie, H. De, Sommen, F.: Correct rules for Clifford calculus on superspace. Adv. Appl. Clifford Algebr. 17 (2007), 357-382. | DOI | MR | JFM
[6] Bie, H. De, Sommen, F.: Spherical harmonics and integration in superspace. J. Phys. A, Math. Theor. 40 (2007), 7193-7212. | DOI | MR | JFM
[7] Dunkl, C. F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311 (1989), 167-183. | DOI | MR | JFM
[8] Dunkl, C. F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications 81, Cambridge University Press, Cambridge (2001). | DOI | MR | JFM
[9] Fei, M. G.: Fundamental solutions of iterated Dunkl-Dirac operators and their applications. Acta Math. Sci. Ser. A, Chin. Ed. 33 (2013), 1052-1061 Chinese. | MR | JFM
[10] Fei, M., Cerejeiras, P., Kähler, U.: Fueter's theorem and its generalizations in Dunkl-Clifford analysis. J. Phys. A, Math. Theor. 42 (2009), Article ID 395209, 15 pages. | DOI | MR | JFM
[11] Fei, M., Cerejeiras, P., Kähler, U.: Spherical Dunkl-monogenics and a factorization of the Dunkl-Laplacian. J. Phys. A, Math. Theor. 43 (2010), Article ID 445202, 14 pages. | DOI | MR | JFM
[12] Heckman, G. J.: Dunkl operators. Séminaire Bourbaki, Volume 1996/97. Exposés 820-834. Société Mathématique de France, Astérisque 245 (1997), 223-246. | MR | JFM
[13] Humphreys, J. E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge (1990). | DOI | MR | JFM
[14] Ren, G.: Howe duality in Dunkl superspace. Sci. China, Math. 53 (2010), 3153-3162. | DOI | MR | JFM
[15] Trimèche, K.: Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators. Integral Transforms Spec. Funct. 13 (2002), 17-38. | DOI | MR | JFM
[16] Diejen, J. F. Van, (eds.), L. Vinet: Calogero-Moser-Sutherland Models. Workshop, Centre de Recherches Mathématique, Montréal, 1997. CRM Series in Mathematical Physics, Springer, New York (2000). | DOI | MR | JFM
[17] Yuan, H. F., Karachik, V. V.: Dunkl-Poisson equation and related equations in superspace. Math. Model. Anal. 20 (2015), 768-781. | DOI | MR
[18] Yuan, H., Qiao, Y., Yang, H.: Properties of $k$-monogenic functions and their relative functions in superspace. Adv. Math., Beijing 42 (2013), 233-242 Chinese. | MR | JFM
[19] Yuan, H., Zhang, Z., Qiao, Y.: Polynomial Dirac operators in superspace. Adv. Appl. Clifford Algebr. 25 (2015), 755-769. | DOI | MR | JFM
Cité par Sources :