A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 795-808.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.
DOI : 10.21136/CMJ.2017.0187-16
Classification : 26B20, 30G35, 58C50
Keywords: super Dunkl-Dirac operator; Stokes formula; Cauchy-Pompeiu integral formula; Morera's theorem; Painlevé theorem
@article{10_21136_CMJ_2017_0187_16,
     author = {Yuan, Hongfen},
     title = {A {Cauchy-Pompeiu} formula in super {Dunkl-Clifford} analysis},
     journal = {Czechoslovak Mathematical Journal},
     pages = {795--808},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2017},
     doi = {10.21136/CMJ.2017.0187-16},
     mrnumber = {3697917},
     zbl = {06770131},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0187-16/}
}
TY  - JOUR
AU  - Yuan, Hongfen
TI  - A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 795
EP  - 808
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0187-16/
DO  - 10.21136/CMJ.2017.0187-16
LA  - en
ID  - 10_21136_CMJ_2017_0187_16
ER  - 
%0 Journal Article
%A Yuan, Hongfen
%T A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis
%J Czechoslovak Mathematical Journal
%D 2017
%P 795-808
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0187-16/
%R 10.21136/CMJ.2017.0187-16
%G en
%F 10_21136_CMJ_2017_0187_16
Yuan, Hongfen. A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 795-808. doi : 10.21136/CMJ.2017.0187-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0187-16/

Cité par Sources :