A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 795-808
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.
Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.
DOI :
10.21136/CMJ.2017.0187-16
Classification :
26B20, 30G35, 58C50
Keywords: super Dunkl-Dirac operator; Stokes formula; Cauchy-Pompeiu integral formula; Morera's theorem; Painlevé theorem
Keywords: super Dunkl-Dirac operator; Stokes formula; Cauchy-Pompeiu integral formula; Morera's theorem; Painlevé theorem
@article{10_21136_CMJ_2017_0187_16,
author = {Yuan, Hongfen},
title = {A {Cauchy-Pompeiu} formula in super {Dunkl-Clifford} analysis},
journal = {Czechoslovak Mathematical Journal},
pages = {795--808},
year = {2017},
volume = {67},
number = {3},
doi = {10.21136/CMJ.2017.0187-16},
mrnumber = {3697917},
zbl = {06770131},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0187-16/}
}
TY - JOUR AU - Yuan, Hongfen TI - A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis JO - Czechoslovak Mathematical Journal PY - 2017 SP - 795 EP - 808 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0187-16/ DO - 10.21136/CMJ.2017.0187-16 LA - en ID - 10_21136_CMJ_2017_0187_16 ER -
Yuan, Hongfen. A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 795-808. doi: 10.21136/CMJ.2017.0187-16
Cité par Sources :