Keywords: clean; Cohen-Macaulay simplicial complex; complete intersection; matroid; symbolic power
@article{10_21136_CMJ_2017_0173_16,
author = {Bandari, Somayeh and Jahan, Ali Soleyman},
title = {The cleanness of (symbolic) powers of {Stanley-Reisner} ideals},
journal = {Czechoslovak Mathematical Journal},
pages = {767--778},
year = {2017},
volume = {67},
number = {3},
doi = {10.21136/CMJ.2017.0173-16},
mrnumber = {3697915},
zbl = {06770129},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0173-16/}
}
TY - JOUR AU - Bandari, Somayeh AU - Jahan, Ali Soleyman TI - The cleanness of (symbolic) powers of Stanley-Reisner ideals JO - Czechoslovak Mathematical Journal PY - 2017 SP - 767 EP - 778 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0173-16/ DO - 10.21136/CMJ.2017.0173-16 LA - en ID - 10_21136_CMJ_2017_0173_16 ER -
%0 Journal Article %A Bandari, Somayeh %A Jahan, Ali Soleyman %T The cleanness of (symbolic) powers of Stanley-Reisner ideals %J Czechoslovak Mathematical Journal %D 2017 %P 767-778 %V 67 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0173-16/ %R 10.21136/CMJ.2017.0173-16 %G en %F 10_21136_CMJ_2017_0173_16
Bandari, Somayeh; Jahan, Ali Soleyman. The cleanness of (symbolic) powers of Stanley-Reisner ideals. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 767-778. doi: 10.21136/CMJ.2017.0173-16
[1] Achilles, R., Vogel, W.: Über vollständige Durchschnitte in lokalen Ringen. Math. Nachr. 89 (1979), 285-298 German. | DOI | MR | JFM
[2] Bandari, S., Divaani-Aazar, K., Jahan, A. S.: Almost complete intersections and Stanley's conjecture. Kodai Math. J. 37 (2014), 396-404. | DOI | MR | JFM
[3] Björner, A., Wachs, M. L.: Shellable nonpure complexes and posets. I. Trans. Am. Math. Soc. 348 (1996), 1299-1327. | DOI | MR | JFM
[4] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1993). | MR | JFM
[5] Dress, A.: A new algebraic criterion for shellability. Beitr. Algebra Geom. 34 (1993), 45-55. | MR | JFM
[6] Faridi, S.: Monomial ideals via square-free monomial ideals. Commutative Algebra: Geometric, Homological, Combinatorial and Computational Aspects A. Corso et al. Proc. Conf., Sevilla, 2003. Lecture Notes in Pure and Applied Mathematics 244, Chapman & Hall/CRC, Boca Raton (2006), 85-114. | DOI | MR | JFM
[7] Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics 260, Springer, London (2011). | DOI | MR | JFM
[8] Herzog, J., Popescu, D.: Finite filtrations of modules and shellable multicomplexes. Manuscr. Math. 121 (2006), 385-410. | DOI | MR | JFM
[9] Herzog, J., Popescu, D., Vladoiu, M.: On the Ext-modules of ideals of Borel type. Commutative Algebra: Interactions with Algebraic Geometry L. L. Avramov et al. Proc. Conf., Grenoble, 2001, Contemp. Math. 331, AMS, Providence (2003), 171-186. | DOI | MR | JFM
[10] Hoang, D. T., Minh, N. C., Trung, T. N.: Combinatorial characterizations of the Cohen-Macaulayness of the second power of edge ideals. J. Comb. Theory, Ser. A 120 (2013), 1073-1086. | DOI | MR | JFM
[11] Jahan, A. S.: Prime filtrations of monomial ideals and polarizations. J. Algebra 312 (2007), 1011-1032. | DOI | MR | JFM
[12] Minh, N. C., Trung, N. V.: Cohen-Macaulayness of powers of two-dimensional squarefree monomial ideals. J. Algebra 322 (2009), 4219-4227. | DOI | MR | JFM
[13] Minh, N. C., Trung, N. V.: Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley-Reisner ideals. Adv. Math. 226 (2011), 1285-1306 corrigendum ibid. 228 2982-2983 2011. | DOI | MR | JFM
[14] Oxley, J. G.: Matroid Theory. Oxford Graduate Texts in Mathematics 3, Oxford Science Publications, Oxford University Press, Oxford (1992). | MR | JFM
[15] Stanley, R. P.: Combinatorics and Commutative Algebra. Progress in Mathematics 41, Birkhäuser, Basel (1996). | DOI | MR | JFM
[16] Terai, N., Trung, N. V.: Cohen-Macaulayness of large powers of Stanley-Reisner ideals. Adv. Math. 229 (2012), 711-730. | DOI | MR | JFM
[17] Varbaro, M.: Symbolic powers and matroids. Proc. Am. Math. Soc. 139 (2011), 2357-2366. | DOI | MR | JFM
[18] Villarreal, R. H.: Monomial Algebras. Pure and Applied Mathematics 238, Marcel Dekker, New York (2001). | MR | JFM
Cité par Sources :