Depth and Stanley depth of the facet ideals of some classes of simplicial complexes
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 753-766
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\Delta _{n,d}$ (resp.\ $\Delta _{n,d}'$) be the simplicial complex and the facet ideal $I_{n,d}=(x_{1}\cdots x_{d},x_{d-k+1}\cdots x_{2d-k},\ldots ,x_{n-d+1}\cdots x_{n})$ (resp.\ $J_{n,d}=(x_{1}\cdots x_{d},x_{d-k+1}\cdots x_{2d-k},\ldots ,x_{n-2d+2k+1}\cdots x_{n-d+2k},x_{n-d+k+1}\cdots x_{n}x_{1}\cdots x_{k})$). When $d\geq 2k+1$, we give the exact formulas to compute the depth and Stanley depth of quotient rings $S/J_{n,d}$ and $S/I_{n,d}^t$ for all $t\geq 1$. When $d=2k$, we compute the depth and Stanley depth of quotient rings $S/J_{n,d}$ and $S/I_{n,d}$, and give lower bounds for the depth and Stanley depth of quotient rings $S/I_{n,d}^t$ for all $t\geq 1$.
Let $\Delta _{n,d}$ (resp.\ $\Delta _{n,d}'$) be the simplicial complex and the facet ideal $I_{n,d}=(x_{1}\cdots x_{d},x_{d-k+1}\cdots x_{2d-k},\ldots ,x_{n-d+1}\cdots x_{n})$ (resp.\ $J_{n,d}=(x_{1}\cdots x_{d},x_{d-k+1}\cdots x_{2d-k},\ldots ,x_{n-2d+2k+1}\cdots x_{n-d+2k},x_{n-d+k+1}\cdots x_{n}x_{1}\cdots x_{k})$). When $d\geq 2k+1$, we give the exact formulas to compute the depth and Stanley depth of quotient rings $S/J_{n,d}$ and $S/I_{n,d}^t$ for all $t\geq 1$. When $d=2k$, we compute the depth and Stanley depth of quotient rings $S/J_{n,d}$ and $S/I_{n,d}$, and give lower bounds for the depth and Stanley depth of quotient rings $S/I_{n,d}^t$ for all $t\geq 1$.
DOI :
10.21136/CMJ.2017.0172-16
Classification :
13C15, 13F20, 13F55, 13P10
Keywords: monomial ideal; facet ideal; depth; Stanley depth
Keywords: monomial ideal; facet ideal; depth; Stanley depth
@article{10_21136_CMJ_2017_0172_16,
author = {Wei, Xiaoqi and Gu, Yan},
title = {Depth and {Stanley} depth of the facet ideals of some classes of simplicial complexes},
journal = {Czechoslovak Mathematical Journal},
pages = {753--766},
year = {2017},
volume = {67},
number = {3},
doi = {10.21136/CMJ.2017.0172-16},
mrnumber = {3697914},
zbl = {06770128},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0172-16/}
}
TY - JOUR AU - Wei, Xiaoqi AU - Gu, Yan TI - Depth and Stanley depth of the facet ideals of some classes of simplicial complexes JO - Czechoslovak Mathematical Journal PY - 2017 SP - 753 EP - 766 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0172-16/ DO - 10.21136/CMJ.2017.0172-16 LA - en ID - 10_21136_CMJ_2017_0172_16 ER -
%0 Journal Article %A Wei, Xiaoqi %A Gu, Yan %T Depth and Stanley depth of the facet ideals of some classes of simplicial complexes %J Czechoslovak Mathematical Journal %D 2017 %P 753-766 %V 67 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0172-16/ %R 10.21136/CMJ.2017.0172-16 %G en %F 10_21136_CMJ_2017_0172_16
Wei, Xiaoqi; Gu, Yan. Depth and Stanley depth of the facet ideals of some classes of simplicial complexes. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 753-766. doi: 10.21136/CMJ.2017.0172-16
Cité par Sources :