On boundary value problems for systems of nonlinear generalized ordinary differential equations
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 579-608.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A general theorem (principle of a priori boundedness) on solvability of the boundary value problem $$ {\rm d} x={\rm d} A(t)\cdot f(t,x),\quad h(x)=0 $$ is established, where $f\colon [a,b]\times \mathbb {R}^n\to \mathbb {R}^n$ is a vector-function belonging to the Carathéodory class corresponding to the matrix-function $A\colon [a,b]\to \mathbb {R}^{n\times n}$ with bounded total variation components, and $h\colon \operatorname {BV}_s([a,b],\mathbb {R}^n)\to \mathbb {R}^n$ is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition $x(t_1(x))=\mathcal {B}(x)\cdot x(t_2(x))+c_0,$ where $t_i\colon \operatorname {BV}_s([a,b],\mathbb {R}^{n})\to [a,b]$ $(i=1,2)$ and $\mathcal {B}\colon \operatorname {BV}_s([a,b],\mathbb {R}^{n})\to \mathbb {R}^n$ are continuous operators, and $c_0\in \mathbb {R}^n$.
DOI : 10.21136/CMJ.2017.0144-11
Classification : 34K10
Keywords: system of nonlinear generalized ordinary differential equations; Kurzweil-Stieltjes integral; general boundary value problem; solvability; principle of a priori boundedness
@article{10_21136_CMJ_2017_0144_11,
     author = {Ashordia, Malkhaz},
     title = {On boundary value problems for systems of nonlinear generalized ordinary differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {579--608},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2017},
     doi = {10.21136/CMJ.2017.0144-11},
     mrnumber = {3697905},
     zbl = {06770119},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0144-11/}
}
TY  - JOUR
AU  - Ashordia, Malkhaz
TI  - On boundary value problems for systems of nonlinear generalized ordinary differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 579
EP  - 608
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0144-11/
DO  - 10.21136/CMJ.2017.0144-11
LA  - en
ID  - 10_21136_CMJ_2017_0144_11
ER  - 
%0 Journal Article
%A Ashordia, Malkhaz
%T On boundary value problems for systems of nonlinear generalized ordinary differential equations
%J Czechoslovak Mathematical Journal
%D 2017
%P 579-608
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0144-11/
%R 10.21136/CMJ.2017.0144-11
%G en
%F 10_21136_CMJ_2017_0144_11
Ashordia, Malkhaz. On boundary value problems for systems of nonlinear generalized ordinary differential equations. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 579-608. doi : 10.21136/CMJ.2017.0144-11. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0144-11/

Cité par Sources :