On boundary value problems for systems of nonlinear generalized ordinary differential equations
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 579-608
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A general theorem (principle of a priori boundedness) on solvability of the boundary value problem $$ {\rm d} x={\rm d} A(t)\cdot f(t,x),\quad h(x)=0 $$ is established, where $f\colon [a,b]\times \mathbb {R}^n\to \mathbb {R}^n$ is a vector-function belonging to the Carathéodory class corresponding to the matrix-function $A\colon [a,b]\to \mathbb {R}^{n\times n}$ with bounded total variation components, and $h\colon \operatorname {BV}_s([a,b],\mathbb {R}^n)\to \mathbb {R}^n$ is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition $x(t_1(x))=\mathcal {B}(x)\cdot x(t_2(x))+c_0,$ where $t_i\colon \operatorname {BV}_s([a,b],\mathbb {R}^{n})\to [a,b]$ $(i=1,2)$ and $\mathcal {B}\colon \operatorname {BV}_s([a,b],\mathbb {R}^{n})\to \mathbb {R}^n$ are continuous operators, and $c_0\in \mathbb {R}^n$.
A general theorem (principle of a priori boundedness) on solvability of the boundary value problem $$ {\rm d} x={\rm d} A(t)\cdot f(t,x),\quad h(x)=0 $$ is established, where $f\colon [a,b]\times \mathbb {R}^n\to \mathbb {R}^n$ is a vector-function belonging to the Carathéodory class corresponding to the matrix-function $A\colon [a,b]\to \mathbb {R}^{n\times n}$ with bounded total variation components, and $h\colon \operatorname {BV}_s([a,b],\mathbb {R}^n)\to \mathbb {R}^n$ is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition $x(t_1(x))=\mathcal {B}(x)\cdot x(t_2(x))+c_0,$ where $t_i\colon \operatorname {BV}_s([a,b],\mathbb {R}^{n})\to [a,b]$ $(i=1,2)$ and $\mathcal {B}\colon \operatorname {BV}_s([a,b],\mathbb {R}^{n})\to \mathbb {R}^n$ are continuous operators, and $c_0\in \mathbb {R}^n$.
DOI : 10.21136/CMJ.2017.0144-11
Classification : 34K10
Keywords: system of nonlinear generalized ordinary differential equations; Kurzweil-Stieltjes integral; general boundary value problem; solvability; principle of a priori boundedness
@article{10_21136_CMJ_2017_0144_11,
     author = {Ashordia, Malkhaz},
     title = {On boundary value problems for systems of nonlinear generalized ordinary differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {579--608},
     year = {2017},
     volume = {67},
     number = {3},
     doi = {10.21136/CMJ.2017.0144-11},
     mrnumber = {3697905},
     zbl = {06770119},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0144-11/}
}
TY  - JOUR
AU  - Ashordia, Malkhaz
TI  - On boundary value problems for systems of nonlinear generalized ordinary differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 579
EP  - 608
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0144-11/
DO  - 10.21136/CMJ.2017.0144-11
LA  - en
ID  - 10_21136_CMJ_2017_0144_11
ER  - 
%0 Journal Article
%A Ashordia, Malkhaz
%T On boundary value problems for systems of nonlinear generalized ordinary differential equations
%J Czechoslovak Mathematical Journal
%D 2017
%P 579-608
%V 67
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0144-11/
%R 10.21136/CMJ.2017.0144-11
%G en
%F 10_21136_CMJ_2017_0144_11
Ashordia, Malkhaz. On boundary value problems for systems of nonlinear generalized ordinary differential equations. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 579-608. doi: 10.21136/CMJ.2017.0144-11

[1] Ashordiya, M. T.: On solvability of quasilinear boundary value problems for systems of generalized ordinary differential equations. Soobshch. Akad. Nauk Gruz. SSR 133 (1989), 261-264 Russian. English summary. | MR | JFM

[2] Ashordia, M.: On the correctness of linear boundary value problems for systems of generalized ordinary differential equations. Georgian Math. J. 1 (1994), 343-351. | DOI | MR | JFM

[3] Ashordia, M.: On the stability of solutions of a multipoint boundary value problem for a system of generalized ordinary differential equations. Mem. Differ. Equ. Math. Phys. 6 (1995), 1-57. | MR | JFM

[4] Ashordiya, M. T.: Criteria for the existence and uniqueness of solutions to nonlinear boundary value problems for systems of generalized ordinary differential equations. Differ. Equations 32 (1996), 442-450. English. Russian original translation from Differ. Uravn. 32 1996 441-449. | MR | JFM

[5] Ashordia, M.: Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations. Czech. Math. J. 46 (1996), 385-404. | MR | JFM

[6] Ashordiya, M. T.: A solvability criterion for a many-point boundary value problem for systems of generalized ordinary differential equations. Differ. Equations 32 (1996), 1300-1308. English. Russian original translation from Differ. Uravn. 32 1996 1303-1311. | MR | JFM

[7] Ashordia, M.: On the correctness of nonlinear boundary value problems for systems of generalized ordinary differential equations. Georgian Math. J. 3 (1996), 501-524. | DOI | MR | JFM

[8] Ashordia, M.: Conditions for existence and uniqueness of solutions to multipoint boundary value problems for systems of generalized ordinary differential equations. Georgian Math. J. 5 (1998), 1-24. | DOI | MR | JFM

[9] Ashordia, M.: On the solvability of linear boundary value problems for systems of generalized ordinary differential equations. Funct. Differ. Equ. 7 (2000), 39-64. | MR | JFM

[10] Ashordia, M.: On the general and multipoint boundary value problems for linear systems of generalized ordinary differential equations, linear impulse and linear difference systems. Mem. Differ. Equ. Math. Phys. 36 (2005), 1-80. | MR | JFM

[11] Conti, R.: Problèmes linéaires pour les équations différentielles ordinaires. Math. Nachr. 23 (1961), 161-178 French. | DOI | MR | JFM

[12] Groh, J.: A nonlinear Volterra-Stieltjes integral equation and a Gronwall inequality in one dimension. Ill. J. Math. 24 (1980), 244-263. | DOI | MR | JFM

[13] Hildebrandt, T. H.: On systems of linear differentio-Stieltjes-integral equations. Ill. J. Math. 3 (1959), 352-373. | DOI | MR | JFM

[14] Kiguradze, I. T.: Boundary-value problems for systems of ordinary differential equations. J. Sov. Math. 43 (1988), 2259-2339. English. Russian original translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30 1987 3-103. | DOI | MR | JFM

[15] Kiguradze, I. T., Půža, B.: On boundary value problems for functional-differential equations. Mem. Differ. Equ. Math. Phys. 12 (1997), 106-113. | MR | JFM

[16] Kiguradze, I. T., Půža, B.: Theorems of Conti-Opial type for nonlinear functional-differential equations. Differ. Equations 33 (1997), 184-193. English. Russian original translation from Differ. Uravn. 33 1997 185-194. | MR | JFM

[17] Kiguradze, I. T., Půža, B.: On the solvability of nonlinear boundary value problems for functional-differential equations. Georgian Math. J. 5 (1998), 251-262. | DOI | MR | JFM

[18] Kiguradze, I. T., Půža, B.: Conti-Opial type existence and uniqueness theorems for nonlinear singular boundary value problems. Funct. Differ. Equ. 9 (2002), 405-422. | MR | JFM

[19] Kiguradze, I. T., Půža, B.: Boundary Value Problems for Systems of Linear Functional Differential Equations. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. Mathematica 12. Brno: Masaryk University (2003). | MR | JFM

[20] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. | MR | JFM

[21] Opial, Z.: Linear problems for systems of nonlinear differential equations. J. Differ. Equations 3 (1967), 580-594. | DOI | MR | JFM

[22] Schwabik, Š.: Generalized Ordinary Differential Equations. Series in Real Analysis 5, World Scientific, Singapore (1992). | DOI | MR | JFM

[23] Schwabik, Š., Tvrdý, M.: Boundary value problems for generalized linear differential equations. Czech. Math. J. 29 (1979), 451-477. | MR | JFM

[24] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations. Boundary Value Problems and Adjoints. Reidel, Dordrecht, in co-ed. with Academia, Publishing House of the Czechoslovak Academy of Sciences, Praha (1979). | MR | JFM

Cité par Sources :