Keywords: system of nonlinear generalized ordinary differential equations; Kurzweil-Stieltjes integral; general boundary value problem; solvability; principle of a priori boundedness
@article{10_21136_CMJ_2017_0144_11,
author = {Ashordia, Malkhaz},
title = {On boundary value problems for systems of nonlinear generalized ordinary differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {579--608},
year = {2017},
volume = {67},
number = {3},
doi = {10.21136/CMJ.2017.0144-11},
mrnumber = {3697905},
zbl = {06770119},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0144-11/}
}
TY - JOUR AU - Ashordia, Malkhaz TI - On boundary value problems for systems of nonlinear generalized ordinary differential equations JO - Czechoslovak Mathematical Journal PY - 2017 SP - 579 EP - 608 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0144-11/ DO - 10.21136/CMJ.2017.0144-11 LA - en ID - 10_21136_CMJ_2017_0144_11 ER -
%0 Journal Article %A Ashordia, Malkhaz %T On boundary value problems for systems of nonlinear generalized ordinary differential equations %J Czechoslovak Mathematical Journal %D 2017 %P 579-608 %V 67 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0144-11/ %R 10.21136/CMJ.2017.0144-11 %G en %F 10_21136_CMJ_2017_0144_11
Ashordia, Malkhaz. On boundary value problems for systems of nonlinear generalized ordinary differential equations. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 579-608. doi: 10.21136/CMJ.2017.0144-11
[1] Ashordiya, M. T.: On solvability of quasilinear boundary value problems for systems of generalized ordinary differential equations. Soobshch. Akad. Nauk Gruz. SSR 133 (1989), 261-264 Russian. English summary. | MR | JFM
[2] Ashordia, M.: On the correctness of linear boundary value problems for systems of generalized ordinary differential equations. Georgian Math. J. 1 (1994), 343-351. | DOI | MR | JFM
[3] Ashordia, M.: On the stability of solutions of a multipoint boundary value problem for a system of generalized ordinary differential equations. Mem. Differ. Equ. Math. Phys. 6 (1995), 1-57. | MR | JFM
[4] Ashordiya, M. T.: Criteria for the existence and uniqueness of solutions to nonlinear boundary value problems for systems of generalized ordinary differential equations. Differ. Equations 32 (1996), 442-450. English. Russian original translation from Differ. Uravn. 32 1996 441-449. | MR | JFM
[5] Ashordia, M.: Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations. Czech. Math. J. 46 (1996), 385-404. | MR | JFM
[6] Ashordiya, M. T.: A solvability criterion for a many-point boundary value problem for systems of generalized ordinary differential equations. Differ. Equations 32 (1996), 1300-1308. English. Russian original translation from Differ. Uravn. 32 1996 1303-1311. | MR | JFM
[7] Ashordia, M.: On the correctness of nonlinear boundary value problems for systems of generalized ordinary differential equations. Georgian Math. J. 3 (1996), 501-524. | DOI | MR | JFM
[8] Ashordia, M.: Conditions for existence and uniqueness of solutions to multipoint boundary value problems for systems of generalized ordinary differential equations. Georgian Math. J. 5 (1998), 1-24. | DOI | MR | JFM
[9] Ashordia, M.: On the solvability of linear boundary value problems for systems of generalized ordinary differential equations. Funct. Differ. Equ. 7 (2000), 39-64. | MR | JFM
[10] Ashordia, M.: On the general and multipoint boundary value problems for linear systems of generalized ordinary differential equations, linear impulse and linear difference systems. Mem. Differ. Equ. Math. Phys. 36 (2005), 1-80. | MR | JFM
[11] Conti, R.: Problèmes linéaires pour les équations différentielles ordinaires. Math. Nachr. 23 (1961), 161-178 French. | DOI | MR | JFM
[12] Groh, J.: A nonlinear Volterra-Stieltjes integral equation and a Gronwall inequality in one dimension. Ill. J. Math. 24 (1980), 244-263. | DOI | MR | JFM
[13] Hildebrandt, T. H.: On systems of linear differentio-Stieltjes-integral equations. Ill. J. Math. 3 (1959), 352-373. | DOI | MR | JFM
[14] Kiguradze, I. T.: Boundary-value problems for systems of ordinary differential equations. J. Sov. Math. 43 (1988), 2259-2339. English. Russian original translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30 1987 3-103. | DOI | MR | JFM
[15] Kiguradze, I. T., Půža, B.: On boundary value problems for functional-differential equations. Mem. Differ. Equ. Math. Phys. 12 (1997), 106-113. | MR | JFM
[16] Kiguradze, I. T., Půža, B.: Theorems of Conti-Opial type for nonlinear functional-differential equations. Differ. Equations 33 (1997), 184-193. English. Russian original translation from Differ. Uravn. 33 1997 185-194. | MR | JFM
[17] Kiguradze, I. T., Půža, B.: On the solvability of nonlinear boundary value problems for functional-differential equations. Georgian Math. J. 5 (1998), 251-262. | DOI | MR | JFM
[18] Kiguradze, I. T., Půža, B.: Conti-Opial type existence and uniqueness theorems for nonlinear singular boundary value problems. Funct. Differ. Equ. 9 (2002), 405-422. | MR | JFM
[19] Kiguradze, I. T., Půža, B.: Boundary Value Problems for Systems of Linear Functional Differential Equations. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. Mathematica 12. Brno: Masaryk University (2003). | MR | JFM
[20] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. | MR | JFM
[21] Opial, Z.: Linear problems for systems of nonlinear differential equations. J. Differ. Equations 3 (1967), 580-594. | DOI | MR | JFM
[22] Schwabik, Š.: Generalized Ordinary Differential Equations. Series in Real Analysis 5, World Scientific, Singapore (1992). | DOI | MR | JFM
[23] Schwabik, Š., Tvrdý, M.: Boundary value problems for generalized linear differential equations. Czech. Math. J. 29 (1979), 451-477. | MR | JFM
[24] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations. Boundary Value Problems and Adjoints. Reidel, Dordrecht, in co-ed. with Academia, Publishing House of the Czechoslovak Academy of Sciences, Praha (1979). | MR | JFM
Cité par Sources :