On boundary value problems for systems of nonlinear generalized ordinary differential equations
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 579-608
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A general theorem (principle of a priori boundedness) on solvability of the boundary value problem $$ {\rm d} x={\rm d} A(t)\cdot f(t,x),\quad h(x)=0 $$ is established, where $f\colon [a,b]\times \mathbb {R}^n\to \mathbb {R}^n$ is a vector-function belonging to the Carathéodory class corresponding to the matrix-function $A\colon [a,b]\to \mathbb {R}^{n\times n}$ with bounded total variation components, and $h\colon \operatorname {BV}_s([a,b],\mathbb {R}^n)\to \mathbb {R}^n$ is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition $x(t_1(x))=\mathcal {B}(x)\cdot x(t_2(x))+c_0,$ where $t_i\colon \operatorname {BV}_s([a,b],\mathbb {R}^{n})\to [a,b]$ $(i=1,2)$ and $\mathcal {B}\colon \operatorname {BV}_s([a,b],\mathbb {R}^{n})\to \mathbb {R}^n$ are continuous operators, and $c_0\in \mathbb {R}^n$.
DOI :
10.21136/CMJ.2017.0144-11
Classification :
34K10
Keywords: system of nonlinear generalized ordinary differential equations; Kurzweil-Stieltjes integral; general boundary value problem; solvability; principle of a priori boundedness
Keywords: system of nonlinear generalized ordinary differential equations; Kurzweil-Stieltjes integral; general boundary value problem; solvability; principle of a priori boundedness
@article{10_21136_CMJ_2017_0144_11,
author = {Ashordia, Malkhaz},
title = {On boundary value problems for systems of nonlinear generalized ordinary differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {579--608},
publisher = {mathdoc},
volume = {67},
number = {3},
year = {2017},
doi = {10.21136/CMJ.2017.0144-11},
mrnumber = {3697905},
zbl = {06770119},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0144-11/}
}
TY - JOUR AU - Ashordia, Malkhaz TI - On boundary value problems for systems of nonlinear generalized ordinary differential equations JO - Czechoslovak Mathematical Journal PY - 2017 SP - 579 EP - 608 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0144-11/ DO - 10.21136/CMJ.2017.0144-11 LA - en ID - 10_21136_CMJ_2017_0144_11 ER -
%0 Journal Article %A Ashordia, Malkhaz %T On boundary value problems for systems of nonlinear generalized ordinary differential equations %J Czechoslovak Mathematical Journal %D 2017 %P 579-608 %V 67 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0144-11/ %R 10.21136/CMJ.2017.0144-11 %G en %F 10_21136_CMJ_2017_0144_11
Ashordia, Malkhaz. On boundary value problems for systems of nonlinear generalized ordinary differential equations. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 579-608. doi: 10.21136/CMJ.2017.0144-11
Cité par Sources :