On critical values of twisted Artin $L$-functions
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 551-555 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a simple proof that critical values of any Artin $L$-function attached to a representation $\rho $ with character $\chi _{\rho }$ are stable under twisting by a totally even character $\chi $, up to the $\dim \rho $-th power of the Gauss sum related to $\chi $ and an element in the field generated by the values of $\chi _{\rho }$ and $\chi $ over $\mathbb {Q}$. This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.
We give a simple proof that critical values of any Artin $L$-function attached to a representation $\rho $ with character $\chi _{\rho }$ are stable under twisting by a totally even character $\chi $, up to the $\dim \rho $-th power of the Gauss sum related to $\chi $ and an element in the field generated by the values of $\chi _{\rho }$ and $\chi $ over $\mathbb {Q}$. This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.
DOI : 10.21136/CMJ.2017.0134-16
Classification : 11F67, 11F80, 11L05, 11M06
Keywords: Artin $L$-function; character; Galois Gauss sum; special value
@article{10_21136_CMJ_2017_0134_16,
     author = {Wong, Peng-Jie},
     title = {On critical values of twisted {Artin} $L$-functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {551--555},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.2017.0134-16},
     mrnumber = {3661060},
     zbl = {06738538},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0134-16/}
}
TY  - JOUR
AU  - Wong, Peng-Jie
TI  - On critical values of twisted Artin $L$-functions
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 551
EP  - 555
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0134-16/
DO  - 10.21136/CMJ.2017.0134-16
LA  - en
ID  - 10_21136_CMJ_2017_0134_16
ER  - 
%0 Journal Article
%A Wong, Peng-Jie
%T On critical values of twisted Artin $L$-functions
%J Czechoslovak Mathematical Journal
%D 2017
%P 551-555
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0134-16/
%R 10.21136/CMJ.2017.0134-16
%G en
%F 10_21136_CMJ_2017_0134_16
Wong, Peng-Jie. On critical values of twisted Artin $L$-functions. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 551-555. doi: 10.21136/CMJ.2017.0134-16

[1] Coates, J., Lichtenbaum, S.: On $l$-adic zeta functions. Ann. Math. (2) 98 (1973), 498-550. | DOI | MR | JFM

[2] Klingen, H.: Über die Werte der Dedekindschen Zetafunktion. Math. Ann. 145 (1962), 265-272 German. | DOI | MR | JFM

[3] Martinet, J.: Character theory and Artin $L$-functions. Algebraic Number Fields Proc. Symp. London math. Soc., Univ. Durham 1975, Academic Press, London (1977), 1-87. | MR | JFM

[4] Neukirch, J.: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften 322, Springer, Berlin (1999). | DOI | MR | JFM

[5] Siegel, C. L.: Über die Fourierschen Koeffizienten von Modulformen. Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl. 3 (1970), 15-56 German. | MR | JFM

[6] Ward, K.: Values of twisted Artin $L$-functions. Arch. Math. 103 (2014), 285-290. | DOI | MR | JFM

Cité par Sources :