Keywords: Artin $L$-function; character; Galois Gauss sum; special value
@article{10_21136_CMJ_2017_0134_16,
author = {Wong, Peng-Jie},
title = {On critical values of twisted {Artin} $L$-functions},
journal = {Czechoslovak Mathematical Journal},
pages = {551--555},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0134-16},
mrnumber = {3661060},
zbl = {06738538},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0134-16/}
}
TY - JOUR AU - Wong, Peng-Jie TI - On critical values of twisted Artin $L$-functions JO - Czechoslovak Mathematical Journal PY - 2017 SP - 551 EP - 555 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0134-16/ DO - 10.21136/CMJ.2017.0134-16 LA - en ID - 10_21136_CMJ_2017_0134_16 ER -
Wong, Peng-Jie. On critical values of twisted Artin $L$-functions. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 551-555. doi: 10.21136/CMJ.2017.0134-16
[1] Coates, J., Lichtenbaum, S.: On $l$-adic zeta functions. Ann. Math. (2) 98 (1973), 498-550. | DOI | MR | JFM
[2] Klingen, H.: Über die Werte der Dedekindschen Zetafunktion. Math. Ann. 145 (1962), 265-272 German. | DOI | MR | JFM
[3] Martinet, J.: Character theory and Artin $L$-functions. Algebraic Number Fields Proc. Symp. London math. Soc., Univ. Durham 1975, Academic Press, London (1977), 1-87. | MR | JFM
[4] Neukirch, J.: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften 322, Springer, Berlin (1999). | DOI | MR | JFM
[5] Siegel, C. L.: Über die Fourierschen Koeffizienten von Modulformen. Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl. 3 (1970), 15-56 German. | MR | JFM
[6] Ward, K.: Values of twisted Artin $L$-functions. Arch. Math. 103 (2014), 285-290. | DOI | MR | JFM
Cité par Sources :