On critical values of twisted Artin $L$-functions
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 551-555
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We give a simple proof that critical values of any Artin $L$-function attached to a representation $\rho $ with character $\chi _{\rho }$ are stable under twisting by a totally even character $\chi $, up to the $\dim \rho $-th power of the Gauss sum related to $\chi $ and an element in the field generated by the values of $\chi _{\rho }$ and $\chi $ over $\mathbb {Q}$. This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.
DOI :
10.21136/CMJ.2017.0134-16
Classification :
11F67, 11F80, 11L05, 11M06
Keywords: Artin $L$-function; character; Galois Gauss sum; special value
Keywords: Artin $L$-function; character; Galois Gauss sum; special value
@article{10_21136_CMJ_2017_0134_16,
author = {Wong, Peng-Jie},
title = {On critical values of twisted {Artin} $L$-functions},
journal = {Czechoslovak Mathematical Journal},
pages = {551--555},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {2017},
doi = {10.21136/CMJ.2017.0134-16},
mrnumber = {3661060},
zbl = {06738538},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0134-16/}
}
TY - JOUR AU - Wong, Peng-Jie TI - On critical values of twisted Artin $L$-functions JO - Czechoslovak Mathematical Journal PY - 2017 SP - 551 EP - 555 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0134-16/ DO - 10.21136/CMJ.2017.0134-16 LA - en ID - 10_21136_CMJ_2017_0134_16 ER -
Wong, Peng-Jie. On critical values of twisted Artin $L$-functions. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 551-555. doi: 10.21136/CMJ.2017.0134-16
Cité par Sources :