On critical values of twisted Artin $L$-functions
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 551-555.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give a simple proof that critical values of any Artin $L$-function attached to a representation $\rho $ with character $\chi _{\rho }$ are stable under twisting by a totally even character $\chi $, up to the $\dim \rho $-th power of the Gauss sum related to $\chi $ and an element in the field generated by the values of $\chi _{\rho }$ and $\chi $ over $\mathbb {Q}$. This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.
DOI : 10.21136/CMJ.2017.0134-16
Classification : 11F67, 11F80, 11L05, 11M06
Keywords: Artin $L$-function; character; Galois Gauss sum; special value
@article{10_21136_CMJ_2017_0134_16,
     author = {Wong, Peng-Jie},
     title = {On critical values of twisted {Artin} $L$-functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {551--555},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2017},
     doi = {10.21136/CMJ.2017.0134-16},
     mrnumber = {3661060},
     zbl = {06738538},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0134-16/}
}
TY  - JOUR
AU  - Wong, Peng-Jie
TI  - On critical values of twisted Artin $L$-functions
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 551
EP  - 555
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0134-16/
DO  - 10.21136/CMJ.2017.0134-16
LA  - en
ID  - 10_21136_CMJ_2017_0134_16
ER  - 
%0 Journal Article
%A Wong, Peng-Jie
%T On critical values of twisted Artin $L$-functions
%J Czechoslovak Mathematical Journal
%D 2017
%P 551-555
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0134-16/
%R 10.21136/CMJ.2017.0134-16
%G en
%F 10_21136_CMJ_2017_0134_16
Wong, Peng-Jie. On critical values of twisted Artin $L$-functions. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 551-555. doi : 10.21136/CMJ.2017.0134-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0134-16/

Cité par Sources :