Keywords: weighted shift operator; almost normal operator; hyponormal operator
@article{10_21136_CMJ_2017_0129_17,
author = {Lauric, Vasile},
title = {A remark concerning {Putinar's} model of hyponormal weighted shifts},
journal = {Czechoslovak Mathematical Journal},
pages = {1125--1130},
year = {2018},
volume = {68},
number = {4},
doi = {10.21136/CMJ.2017.0129-17},
mrnumber = {3881902},
zbl = {07031703},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0129-17/}
}
TY - JOUR AU - Lauric, Vasile TI - A remark concerning Putinar's model of hyponormal weighted shifts JO - Czechoslovak Mathematical Journal PY - 2018 SP - 1125 EP - 1130 VL - 68 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0129-17/ DO - 10.21136/CMJ.2017.0129-17 LA - en ID - 10_21136_CMJ_2017_0129_17 ER -
%0 Journal Article %A Lauric, Vasile %T A remark concerning Putinar's model of hyponormal weighted shifts %J Czechoslovak Mathematical Journal %D 2018 %P 1125-1130 %V 68 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0129-17/ %R 10.21136/CMJ.2017.0129-17 %G en %F 10_21136_CMJ_2017_0129_17
Lauric, Vasile. A remark concerning Putinar's model of hyponormal weighted shifts. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1125-1130. doi: 10.21136/CMJ.2017.0129-17
[1] Lauric, V.: Remarks on hyponormal operators and almost normal operators. Matematiche (Catania) 72 (2017), 3-8. | MR
[2] Pasnicu, C.: Weighted shifts as direct summands mod $\mathcal C_2$ of normal operators. Dilation Theory, Toeplitz operators, and Other Topics 7th Int. Conf. Oper. Theory, Timisoara, 1982, Oper. Theory, Adv. Appl. {\it 11} (1983) 275-281. | MR | JFM
[3] Putinar, M.: Hyponormal operators are subscalar. J. Oper. Theory 12 (1984), 385-395. | MR | JFM
[4] Voiculescu, D.: Hilbert space operators modulo normed ideals. Proc. Int. Congr. Math. Warszawa, 1983 2 (1984), 1041-1047. | MR | JFM
[5] Voiculescu, D. V.: Almost normal operators mod Hilbert-Schmidt and the $K$-theory of the Banach algebras $E\Lambda(\Omega)$. J. Noncommut. Geom. 8 (2014), 1123-1145. | DOI | MR | JFM
Cité par Sources :