Keywords: cofinite module; Cohen-Macaulay ring; Krull dimension; local cohomology; regular ring
@article{10_21136_CMJ_2017_0116_16,
author = {A'zami, Jafar and Pourreza, Naser},
title = {Cofiniteness and finiteness of local cohomology modules over regular local rings},
journal = {Czechoslovak Mathematical Journal},
pages = {733--740},
year = {2017},
volume = {67},
number = {3},
doi = {10.21136/CMJ.2017.0116-16},
mrnumber = {3697912},
zbl = {06770126},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0116-16/}
}
TY - JOUR AU - A'zami, Jafar AU - Pourreza, Naser TI - Cofiniteness and finiteness of local cohomology modules over regular local rings JO - Czechoslovak Mathematical Journal PY - 2017 SP - 733 EP - 740 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0116-16/ DO - 10.21136/CMJ.2017.0116-16 LA - en ID - 10_21136_CMJ_2017_0116_16 ER -
%0 Journal Article %A A'zami, Jafar %A Pourreza, Naser %T Cofiniteness and finiteness of local cohomology modules over regular local rings %J Czechoslovak Mathematical Journal %D 2017 %P 733-740 %V 67 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0116-16/ %R 10.21136/CMJ.2017.0116-16 %G en %F 10_21136_CMJ_2017_0116_16
A'zami, Jafar; Pourreza, Naser. Cofiniteness and finiteness of local cohomology modules over regular local rings. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 733-740. doi: 10.21136/CMJ.2017.0116-16
[1] Bagheriyeh, I., Bahmanpour, K., A'zami, J.: Cofiniteness and non-vanishing of local cohomology modules. J. Commut. Algebra 6 (2014), 305-321. | DOI | MR | JFM
[2] Bahmanpour, K.: Annihilators of local cohomology modules. Commun. Algebra 43 (2015), 2509-2515. | DOI | MR | JFM
[3] Bahmanpour, K., A'zami, J., Ghasemi, G.: On the annihilators of local cohomology modules. J. Algebra 363 (2012), 8-13. | DOI | MR | JFM
[4] Bahmanpour, K., Naghipour, R.: Associated primes of local cohomology modules and Matlis duality. J. Algebra 320 (2008), 2632-2641. | DOI | MR | JFM
[5] Bahmanpour, K., Naghipour, R.: Cofiniteness of local cohomology modules for ideals of small dimension. J. Algebra 321 (2009), 1997-2011. | DOI | MR | JFM
[6] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). | DOI | MR | JFM
[7] Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz loceaux et globeaux (SGA 2). Séminaire de Géométrie Algébrique du Bois-Marie, 1962, Advanced Studies in Pure Mathematics 2, North-Holland Publishing Company, Amsterdam; Masson & Cie, Éditeur, Paris (1968), French. | MR | JFM
[8] Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9 (1970), 145-164. | DOI | MR | JFM
[9] Hellus, M.: On the set of associated primes of a local cohomology module. J. Algebra 237 (2001), 406-419. | DOI | MR | JFM
[10] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules. Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. | DOI | MR | JFM
[11] Khashyarmanesh, K.: On the finiteness properties of extension and torsion functors of local cohomology modules. Proc. Am. Math. Soc. 135 (2007), 1319-1327. | DOI | MR | JFM
[12] Khashyarmanesh, K., Salarian, Sh.: Filter regular sequences and the finiteness of local cohomology modules. Commun. Algebra 26 (1998), 2483-2490. | DOI | MR | JFM
[13] Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285 (2005), 649-668. | DOI | MR | JFM
[14] Schenzel, P.: Proregular sequences, local cohomology, and completion. Math. Scand. 92 (2003), 161-180. | DOI | MR | JFM
Cité par Sources :