Arithmetic genus of integral space curves
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1079-1089 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give an estimation for the arithmetic genus of an integral space curve which is not contained in a surface of degree $k-1$. Our main technique is the Bogomolov-Gieseker type inequality for $\mathbb {P}^3$ proved by Macrì.
We give an estimation for the arithmetic genus of an integral space curve which is not contained in a surface of degree $k-1$. Our main technique is the Bogomolov-Gieseker type inequality for $\mathbb {P}^3$ proved by Macrì.
DOI : 10.21136/CMJ.2017.0093-17
Classification : 14F05, 14H50
Keywords: space curve; arithmetic genus; Bridgeland stability; Bogomolov-Gieseker inequality
@article{10_21136_CMJ_2017_0093_17,
     author = {Sun, Hao},
     title = {Arithmetic genus of integral space curves},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1079--1089},
     year = {2018},
     volume = {68},
     number = {4},
     doi = {10.21136/CMJ.2017.0093-17},
     mrnumber = {3881898},
     zbl = {07031699},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0093-17/}
}
TY  - JOUR
AU  - Sun, Hao
TI  - Arithmetic genus of integral space curves
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 1079
EP  - 1089
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0093-17/
DO  - 10.21136/CMJ.2017.0093-17
LA  - en
ID  - 10_21136_CMJ_2017_0093_17
ER  - 
%0 Journal Article
%A Sun, Hao
%T Arithmetic genus of integral space curves
%J Czechoslovak Mathematical Journal
%D 2018
%P 1079-1089
%V 68
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0093-17/
%R 10.21136/CMJ.2017.0093-17
%G en
%F 10_21136_CMJ_2017_0093_17
Sun, Hao. Arithmetic genus of integral space curves. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1079-1089. doi: 10.21136/CMJ.2017.0093-17

[1] Bayer, A., Bertram, A., Macrì, E., Toda, Y.: Bridgeland stability conditions of threefolds II: An application to Fujita's conjecture. J. Algebr. Geom. 23 (2014), 693-710. | DOI | MR | JFM

[2] Bayer, A., Macrì, E., Stellari, P.: The space of stability conditions on abelian threefolds, and on some Calabi-Yau threefolds. Invent. Math. 206 (2016), 869-933. | DOI | MR | JFM

[3] Bayer, A., Macrì, E., Toda, Y.: Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker type inequalities. J. Algebr. Geom. 23 (2014), 117-163. | DOI | MR | JFM

[4] Bridgeland, T.: Stability conditions on triangulated categories. Ann. of Math. (2) 166 (2007), 317-345. | DOI | MR | JFM

[5] Castelnuovo, G.: Sui multipli di una serie lineare di gruppi di punti appartenente ad una curva algebrica. Palermo Rend. 7 (1893), 89-110 Italian \99999JFM99999 25.1035.02. | DOI

[6] Gruson, L., Peskine, C.: Genre des courbes de l'espace projectif. Algebraic Geometry Proc., TromsøSymp. 1977, Lect. Notes Math. {\it 687}, (1978) 31-59 French. | DOI | MR | JFM

[7] Halphen, G.: Mèmoire sur la classification des courbes gauches algèbriques. J. Ec. Polyt. 52 (1882), 1-200 French.

[8] Happel, D., Reiten, I., Smalø, S. O.: Tilting in abelian categories and quasitilted algebras. Mem. Am. Math. Soc. 575 120 (1996), 88 pages. | DOI | MR | JFM

[9] Harris, J.: The genus of space curves. Math. Ann. 249 (1980), 191-204. | DOI | MR | JFM

[10] Hartshorne, R.: On the classification of algebraic space curves II. Algebraic Geometry Proc. Summer Res. Inst., Brunswick/Maine 1985, part 1, Proc. Symp. Pure Math. 46 (1987), 145-164. | DOI | MR | JFM

[11] Hartshorne, R., Hirschowitz, A.: Nouvelles courbes de bon genre dans l'espace projectif. Math. Ann. 280 (1988), 353-367 French. | DOI | MR | JFM

[12] Maciocia, A.: Computing the walls associated to Bridgeland stability conditions on projective surfaces. Asian J. Math. 18 (2014), 263-280. | DOI | MR | JFM

[13] Macrì, E.: A generalized Bogomolov-Gieseker inequality for the three-dimensional projective space. Algebra Number Theory 8 (2014), 173-190. | DOI | MR | JFM

[14] Toda, Y.: Bogomolov-Gieseker-type inequality and counting invariants. J. Topol. 6 (2013), 217-250. | DOI | MR | JFM

Cité par Sources :