Arithmetic genus of integral space curves
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1079-1089
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We give an estimation for the arithmetic genus of an integral space curve which is not contained in a surface of degree $k-1$. Our main technique is the Bogomolov-Gieseker type inequality for $\mathbb {P}^3$ proved by Macrì.
We give an estimation for the arithmetic genus of an integral space curve which is not contained in a surface of degree $k-1$. Our main technique is the Bogomolov-Gieseker type inequality for $\mathbb {P}^3$ proved by Macrì.
DOI :
10.21136/CMJ.2017.0093-17
Classification :
14F05, 14H50
Keywords: space curve; arithmetic genus; Bridgeland stability; Bogomolov-Gieseker inequality
Keywords: space curve; arithmetic genus; Bridgeland stability; Bogomolov-Gieseker inequality
@article{10_21136_CMJ_2017_0093_17,
author = {Sun, Hao},
title = {Arithmetic genus of integral space curves},
journal = {Czechoslovak Mathematical Journal},
pages = {1079--1089},
year = {2018},
volume = {68},
number = {4},
doi = {10.21136/CMJ.2017.0093-17},
mrnumber = {3881898},
zbl = {07031699},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0093-17/}
}
Sun, Hao. Arithmetic genus of integral space curves. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1079-1089. doi: 10.21136/CMJ.2017.0093-17
Cité par Sources :