Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 715-732
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\theta \in (0,1)$, $\lambda \in [0,1)$ and $p,p_0,p_1\in (1,\infty ]$ be such that ${(1-\theta )}/{p_{0}}+{\theta }/{p_{1}}={1}/{p}$, and let $\varphi , \varphi _0, \varphi _1 $ be some admissible functions such that $\varphi , \varphi _0^{{p}/{p_0}}$ and $\varphi _1^{{p}/{p_1}}$ are equivalent. We first prove that, via the $\pm $ interpolation method, the interpolation $\langle L^{p_0),\lambda }_{\varphi _0}(\mathcal {X}), L^{p_1),\lambda }_{\varphi _1}(\mathcal {X}), \theta \rangle $ of two generalized grand Morrey spaces on a quasi-metric measure space $\mathcal {X}$ is the generalized grand Morrey space $L^{p),\lambda }_{\varphi }(\mathcal {X})$. Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces.
Let $\theta \in (0,1)$, $\lambda \in [0,1)$ and $p,p_0,p_1\in (1,\infty ]$ be such that ${(1-\theta )}/{p_{0}}+{\theta }/{p_{1}}={1}/{p}$, and let $\varphi , \varphi _0, \varphi _1 $ be some admissible functions such that $\varphi , \varphi _0^{{p}/{p_0}}$ and $\varphi _1^{{p}/{p_1}}$ are equivalent. We first prove that, via the $\pm $ interpolation method, the interpolation $\langle L^{p_0),\lambda }_{\varphi _0}(\mathcal {X}), L^{p_1),\lambda }_{\varphi _1}(\mathcal {X}), \theta \rangle $ of two generalized grand Morrey spaces on a quasi-metric measure space $\mathcal {X}$ is the generalized grand Morrey space $L^{p),\lambda }_{\varphi }(\mathcal {X})$. Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces.
DOI : 10.21136/CMJ.2017.0081-16
Classification : 46B10, 46B70
Keywords: grand Lebesgue space; grand Morrey space; Gagliardo-Peetre method; quasi-metric measure space; Calderón product; predual space; $\pm $ interpolation method
@article{10_21136_CMJ_2017_0081_16,
     author = {Liu, Yi and Yuan, Wen},
     title = {Interpolation and duality of generalized grand {Morrey} spaces on quasi-metric measure spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {715--732},
     year = {2017},
     volume = {67},
     number = {3},
     doi = {10.21136/CMJ.2017.0081-16},
     mrnumber = {3697911},
     zbl = {06770125},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0081-16/}
}
TY  - JOUR
AU  - Liu, Yi
AU  - Yuan, Wen
TI  - Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 715
EP  - 732
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0081-16/
DO  - 10.21136/CMJ.2017.0081-16
LA  - en
ID  - 10_21136_CMJ_2017_0081_16
ER  - 
%0 Journal Article
%A Liu, Yi
%A Yuan, Wen
%T Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
%J Czechoslovak Mathematical Journal
%D 2017
%P 715-732
%V 67
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0081-16/
%R 10.21136/CMJ.2017.0081-16
%G en
%F 10_21136_CMJ_2017_0081_16
Liu, Yi; Yuan, Wen. Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 715-732. doi: 10.21136/CMJ.2017.0081-16

[1] Adams, D. R., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53 (2004), 1629-1663. | DOI | MR | JFM

[2] Adams, D. R., Xiao, J.: Morrey spaces in harmonic analysis. Ark. Mat. 50 (2012), 201-230. | DOI | MR | JFM

[3] Anatriello, G.: Iterated grand and small Lebesgue spaces. Collect. Math. 65 (2014), 273-284. | DOI | MR | JFM

[4] Blasco, O., Ruiz, A., Vega, L.: Non interpolation in Morrey-Campanato and block spaces. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 31-40. | MR | JFM

[5] Campanato, S., Murthy, M. K. V.: Una generalizzazione del teorema di Riesz-Thorin. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 19 (1965), 87-100 Italian. | MR | JFM

[6] Capone, C., Formica, M. R., Giova, R.: Grand Lebesgue spaces with respect to measurable functions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 85 (2013), 125-131. | DOI | MR | JFM

[7] Fiorenza, A.: Duality and reflexivity in grand Lebesgue spaces. Collect. Math. 51 (2000), 131-148. | MR | JFM

[8] Fiorenza, A., Gupta, B., Jain, P.: The maximal theorem for weighted grand Lebesgue spaces. Stud. Math. 188 (2008), 123-133. | DOI | MR | JFM

[9] Fiorenza, A., Karadzhov, G. E.: Grand and small Lebesgue spaces and their analogs. Z. Anal. Anwend. 23 (2004), 657-681. | DOI | MR | JFM

[10] Fiorenza, A., Krbec, M.: On the domain and range of the maximal operator. Nagoya Math. J. 158 (2000), 43-61. | DOI | MR | JFM

[11] Fiorenza, A., Mercaldo, A., Rakotoson, J. M.: Regularity and comparison results in grand Sobolev spaces for parabolic equations with measure data. Appl. Math. Lett. 14 (2001), 979-981. | DOI | MR | JFM

[12] Fiorenza, A., Mercaldo, A., Rakotoson, J. M.: Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete Contin. Dyn. Syst. 8 (2002), 893-906. | DOI | MR | JFM

[13] Fiorenza, A., Sbordone, C.: Existence and uniqueness results for solutions of nonlinear equations with right hand side in $L^1$. Stud. Math. 127 (1998), 223-231. | MR | JFM

[14] Futamura, T., Mizuta, Y., Ohno, T.: Sobolev's theorem for Riesz potentials of functions in grand Morrey spaces of variable exponent. Proc. 4th Int. Symposium on Banach and Function Spaces, Kitakyushu, 2012 M. Kato et al. Yokohama Publishers, Yokohama (2014), 353-365. | MR | JFM

[15] Greco, L., Iwaniec, T., Sbordone, C.: Inverting the $p$-harmonic operator. Manuscr. Math. 92 (1997), 249-258. | DOI | MR | JFM

[16] Gustavsson, J.: On interpolation of weighted $L^p$-spaces and Ovchinnikov's theorem. Stud. Math. 72 (1982), 237-251. | DOI | MR | JFM

[17] Gustavsson, J., Peetre, J.: Interpolation of Orlicz spaces. Stud. Math. 60 (1977), 33-59. | DOI | MR | JFM

[18] Iwaniec, T., Sbordone, C.: On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal. 119 (1992), 129-143. | DOI | MR | JFM

[19] Iwaniec, T., Sbordone, C.: Riesz transforms and elliptic PDEs with VMO coefficients. J. Anal. Math. 74 (1998), 183-212. | DOI | MR | JFM

[20] Kokilashvili, V., Meskhi, A., Rafeiro, H.: Boundedness of commutators of singular and potential operators in generalized grand Morrey spaces and some applications. Stud. Math. 217 (2013), 159-178. | DOI | MR | JFM

[21] Kokilashvili, V., Meskhi, A., Rafeiro, H.: Riesz type potential operators in generalized grand Morrey spaces. Georgian Math. J. 20 (2013), 43-64. | DOI | MR | JFM

[22] Kokilashvili, V., Meskhi, A., Rafeiro, H.: Estimates for nondivergence elliptic equations with VMO coefficients in generalized grand Morrey spaces. Complex Var. Elliptic Equ. 59 (2014), 1169-1184. | DOI | MR | JFM

[23] Lemarié-Rieusset, P. G.: Multipliers and Morrey spaces. Potential Anal. 38 (2013), 741-752 erratum ibid. 41 2014 1359-1362. | DOI | MR | JFM

[24] Lu, Y., Yang, D., Yuan, W.: Interpolation of Morrey spaces on metric measure spaces. Can. Math. Bull. 57 (2014), 598-608. | DOI | MR | JFM

[25] Meskhi, A.: Maximal functions and singular integrals in Morrey spaces associated with grand Lebesgue spaces. Proc. A. Razmadze Math. Inst. 151 (2009), 139-143. | MR | JFM

[26] Meskhi, A.: Maximal functions, potentials and singular integrals in grand Morrey spaces. Complex Var. Elliptic Equ. 56 (2011), 1003-1019. | DOI | MR | JFM

[27] Mizuta, Y., Ohno, T.: Trudinger's exponential integrability for Riesz potentials of functions in generalized grand Morrey spaces. J. Math. Anal. Appl. 420 (2014), 268-278. | DOI | MR | JFM

[28] C. B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43 (1938), 126-166. | DOI | MR | JFM

[29] Nilsson, P.: Interpolation of Banach lattices. Stud. Math. 82 (1985), 135-154. | DOI | MR | JFM

[30] Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. Czech. Math. J. 64 (2014), 209-228. | DOI | MR | JFM

[31] Peetre, J.: On the theory of $\mathcal L_{p,\lambda}$ spaces. J. Funct. Anal. 4 (1969), 71-87. | DOI | MR | JFM

[32] Peetre, J.: Sur l'utilisation des suites inconditionellement sommables dans la théorie des espaces d'interpolation. Rend. Sem. Mat. Univ. Padova 46 (1971), 173-190 French. | MR | JFM

[33] Ruiz, A., Vega, L.: Corrigenda to ``Unique continuation for Schrödinger operators'' and a remark on interpolation of Morrey spaces. Publ. Mat., Barc. 39 (1995), 405-411. | DOI | MR | JFM

[34] Sawano, Y., Tanaka, H.: Morrey spaces for non-doubling measures. Acta Math. Sin., Engl. Ser. 21 (2005), 1535-1544. | DOI | MR | JFM

[35] Sawano, Y., Tanaka, H.: Predual spaces of Morrey spaces with non-doubling measures. Tokyo J. Math. 32 (2009), 471-486. | DOI | MR | JFM

[36] Sbordone, C.: Grand Sobolev spaces and their applications to variational problems. Matematiche 51 (1996), 335-347. | MR | JFM

[37] Stampacchia, G.: $\mathcal L^{(p,\lambda)}$-spaces and interpolation. Commun. Pure Appl. Math. 17 (1964), 293-306. | DOI | MR | JFM

[38] Ye, X.: Boundedness of commutators of singular and potential operators in grand Morrey spaces. Acta Math. Sin., Chin. Ser. 54 (2011), 343-352 Chinese. | MR | JFM

[39] Yuan, W., Sickel, W., Yang, D.: Interpolation of Morrey-Campanato and related smoothness spaces. Sci. China, Math. 58 (2015), 1835-1908. | DOI | MR | JFM

[40] Zorko, C. T.: Morrey space. Proc. Am. Math. Soc. 98 (1986), 586-592. | DOI | MR | JFM

Cité par Sources :