Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 715-732.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\theta \in (0,1)$, $\lambda \in [0,1)$ and $p,p_0,p_1\in (1,\infty ]$ be such that ${(1-\theta )}/{p_{0}}+{\theta }/{p_{1}}={1}/{p}$, and let $\varphi , \varphi _0, \varphi _1 $ be some admissible functions such that $\varphi , \varphi _0^{{p}/{p_0}}$ and $\varphi _1^{{p}/{p_1}}$ are equivalent. We first prove that, via the $\pm $ interpolation method, the interpolation $\langle L^{p_0),\lambda }_{\varphi _0}(\mathcal {X}), L^{p_1),\lambda }_{\varphi _1}(\mathcal {X}), \theta \rangle $ of two generalized grand Morrey spaces on a quasi-metric measure space $\mathcal {X}$ is the generalized grand Morrey space $L^{p),\lambda }_{\varphi }(\mathcal {X})$. Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces.
DOI : 10.21136/CMJ.2017.0081-16
Classification : 46B10, 46B70
Keywords: grand Lebesgue space; grand Morrey space; Gagliardo-Peetre method; quasi-metric measure space; Calderón product; predual space; $\pm $ interpolation method
@article{10_21136_CMJ_2017_0081_16,
     author = {Liu, Yi and Yuan, Wen},
     title = {Interpolation and duality of generalized grand {Morrey} spaces on quasi-metric measure spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {715--732},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2017},
     doi = {10.21136/CMJ.2017.0081-16},
     mrnumber = {3697911},
     zbl = {06770125},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0081-16/}
}
TY  - JOUR
AU  - Liu, Yi
AU  - Yuan, Wen
TI  - Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 715
EP  - 732
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0081-16/
DO  - 10.21136/CMJ.2017.0081-16
LA  - en
ID  - 10_21136_CMJ_2017_0081_16
ER  - 
%0 Journal Article
%A Liu, Yi
%A Yuan, Wen
%T Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
%J Czechoslovak Mathematical Journal
%D 2017
%P 715-732
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0081-16/
%R 10.21136/CMJ.2017.0081-16
%G en
%F 10_21136_CMJ_2017_0081_16
Liu, Yi; Yuan, Wen. Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 715-732. doi : 10.21136/CMJ.2017.0081-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0081-16/

Cité par Sources :