Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 715-732
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\theta \in (0,1)$, $\lambda \in [0,1)$ and $p,p_0,p_1\in (1,\infty ]$ be such that ${(1-\theta )}/{p_{0}}+{\theta }/{p_{1}}={1}/{p}$, and let $\varphi , \varphi _0, \varphi _1 $ be some admissible functions such that $\varphi , \varphi _0^{{p}/{p_0}}$ and $\varphi _1^{{p}/{p_1}}$ are equivalent. We first prove that, via the $\pm $ interpolation method, the interpolation $\langle L^{p_0),\lambda }_{\varphi _0}(\mathcal {X}), L^{p_1),\lambda }_{\varphi _1}(\mathcal {X}), \theta \rangle $ of two generalized grand Morrey spaces on a quasi-metric measure space $\mathcal {X}$ is the generalized grand Morrey space $L^{p),\lambda }_{\varphi }(\mathcal {X})$. Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces.
Let $\theta \in (0,1)$, $\lambda \in [0,1)$ and $p,p_0,p_1\in (1,\infty ]$ be such that ${(1-\theta )}/{p_{0}}+{\theta }/{p_{1}}={1}/{p}$, and let $\varphi , \varphi _0, \varphi _1 $ be some admissible functions such that $\varphi , \varphi _0^{{p}/{p_0}}$ and $\varphi _1^{{p}/{p_1}}$ are equivalent. We first prove that, via the $\pm $ interpolation method, the interpolation $\langle L^{p_0),\lambda }_{\varphi _0}(\mathcal {X}), L^{p_1),\lambda }_{\varphi _1}(\mathcal {X}), \theta \rangle $ of two generalized grand Morrey spaces on a quasi-metric measure space $\mathcal {X}$ is the generalized grand Morrey space $L^{p),\lambda }_{\varphi }(\mathcal {X})$. Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces.
DOI :
10.21136/CMJ.2017.0081-16
Classification :
46B10, 46B70
Keywords: grand Lebesgue space; grand Morrey space; Gagliardo-Peetre method; quasi-metric measure space; Calderón product; predual space; $\pm $ interpolation method
Keywords: grand Lebesgue space; grand Morrey space; Gagliardo-Peetre method; quasi-metric measure space; Calderón product; predual space; $\pm $ interpolation method
@article{10_21136_CMJ_2017_0081_16,
author = {Liu, Yi and Yuan, Wen},
title = {Interpolation and duality of generalized grand {Morrey} spaces on quasi-metric measure spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {715--732},
year = {2017},
volume = {67},
number = {3},
doi = {10.21136/CMJ.2017.0081-16},
mrnumber = {3697911},
zbl = {06770125},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0081-16/}
}
TY - JOUR AU - Liu, Yi AU - Yuan, Wen TI - Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces JO - Czechoslovak Mathematical Journal PY - 2017 SP - 715 EP - 732 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0081-16/ DO - 10.21136/CMJ.2017.0081-16 LA - en ID - 10_21136_CMJ_2017_0081_16 ER -
%0 Journal Article %A Liu, Yi %A Yuan, Wen %T Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces %J Czechoslovak Mathematical Journal %D 2017 %P 715-732 %V 67 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0081-16/ %R 10.21136/CMJ.2017.0081-16 %G en %F 10_21136_CMJ_2017_0081_16
Liu, Yi; Yuan, Wen. Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 715-732. doi: 10.21136/CMJ.2017.0081-16
Cité par Sources :