Keywords: multivalued stochastic differential equation; Covitz-Nadler fixed point theorem; multivalued stochastic process
@article{10_21136_CMJ_2017_0072_15,
author = {Malinowski, Marek T. and Agarwal, Ravi P.},
title = {On solutions set of a multivalued stochastic differential equation},
journal = {Czechoslovak Mathematical Journal},
pages = {11--28},
year = {2017},
volume = {67},
number = {1},
doi = {10.21136/CMJ.2017.0072-15},
mrnumber = {3632995},
zbl = {06738501},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0072-15/}
}
TY - JOUR AU - Malinowski, Marek T. AU - Agarwal, Ravi P. TI - On solutions set of a multivalued stochastic differential equation JO - Czechoslovak Mathematical Journal PY - 2017 SP - 11 EP - 28 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0072-15/ DO - 10.21136/CMJ.2017.0072-15 LA - en ID - 10_21136_CMJ_2017_0072_15 ER -
%0 Journal Article %A Malinowski, Marek T. %A Agarwal, Ravi P. %T On solutions set of a multivalued stochastic differential equation %J Czechoslovak Mathematical Journal %D 2017 %P 11-28 %V 67 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0072-15/ %R 10.21136/CMJ.2017.0072-15 %G en %F 10_21136_CMJ_2017_0072_15
Malinowski, Marek T.; Agarwal, Ravi P. On solutions set of a multivalued stochastic differential equation. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 11-28. doi: 10.21136/CMJ.2017.0072-15
[1] Agarwal, R. P., O'Regan, D.: Existence for set differential equations via multivalued operator equations. Differential Equations and Applications 5 1-5 Nova Science Publishers, New York (2007). | MR
[2] Ahmad, B., Sivasundaram, S.: $\phi_0$-stability of impulsive hybrid setvalued differential equations with delay by perturbing Lyapunov functions. Commun. Appl. Anal. 12 (2008), 137-145. | MR | JFM
[3] Anguraj, A., Vinodkumar, A., Chang, Y. K.: Existence results on impulsive stochastic functional differential inclusions with delays. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 20 (2013), 301-318. | MR | JFM
[4] Aubin, J.-P., Prato, G. Da: The viability theorem for stochastic differential inclusions. Stochastic Anal. Appl. 16 (1998), 1-15. | DOI | MR | JFM
[5] Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Modern Birkhäuser Classics. Birkhäuser, Boston (2009). | DOI | MR | JFM
[6] Balasubramaniam, P., Ntouyas, S. K.: Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space. J. Math. Anal. Appl. 324 (2006), 161-176. | DOI | MR | JFM
[7] Bhaskar, T. G., Lakshmikantham, V., Devi, J. Vasundhara: Nonlinear variation of parameters formula for set differential equations in a metric space. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 63 (2005), 735-744. | DOI | MR | JFM
[8] Bouchen, A., Arni, A. El, Ouknine, Y.: Multivalued stochastic integration and stochastic differential inclusions. Stochastics Stochastics Rep. 68 (2000), 297-327. | DOI | MR | JFM
[9] Burachik, R. S., Iusem, A. N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer Optimization and Its Applications. Springer, Berlin (2008). | DOI | MR
[10] Chung, K. L., Williams, R. J.: Introduction to Stochastic Integration. Progress in Probability and Statistics 4. Birkhäuser, Boston (1983). | DOI | MR | JFM
[11] H. Covitz, S. B. Nadler, Jr.: Multi-valued contraction mappings in generalized metric spaces. Isr. J. Math. 8 (1970), 5-11. | DOI | MR | JFM
[12] Prato, G. Da, Frankowska, H.: A stochastic Filippov theorem. Stochastic Anal. Appl. 12 (1994), 409-426. | DOI | MR | JFM
[13] Blasi, F. S. De, Iervolino, F.: Equazioni differenziali con soluzioni a valore compatto convesso. Boll. Unione Mat. Ital., IV. Ser., 2 (1969), 491-501 Errata corrige ibid. 4 1969 699. | MR | JFM
[14] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory. Pure and Applied Mathematics 7. Interscience Publishers, New York (1958). | MR | JFM
[15] Hiai, F., Umegaki, H.: Integrals, conditional expectations, and martingales of multivalued functions. J. Multivariate Anal. 7 (1977), 149-182. | DOI | MR | JFM
[16] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. Volume I: Theory. Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht (1997). | MR | JFM
[17] Jiang, J., Li, C. F., Chen, H. T.: Existence of solutions for set differential equations involving causal operator with memory in Banach space. J. Appl. Math. Comput. 41 (2013), 183-196. | DOI | MR | JFM
[18] Kuratowski, K., Ryll-Nardzewski, C.: A general theorem on selectors. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 397-403. | MR | JFM
[19] Lakshmikantham, V., Bhaskar, T. G., Devi, J. Vasundhara: Theory of Set Differential Equations in a Metric Spaces. Cambridge Scientific Publishers, Cambridge (2006). | MR | JFM
[20] Malinowski, M. T.: On set differential equations in Banach spaces---a second type Hukuhara differentiability approach. Appl. Math. Comput. 219 (2012), 289-305. | DOI | MR | JFM
[21] Malinowski, M. T.: Second type Hukuhara differentiable solutions to the delay set-valued differential equations. Appl. Math. Comput. 218 (2012), 9427-9437. | DOI | MR | JFM
[22] Malinowski, M. T.: On a new set-valued stochastic integral with respect to semimartingales and its applications. J. Math. Anal. Appl. 408 (2013), 669-680. | DOI | MR | JFM
[23] Malinowski, M. T.: Set-valued and fuzzy stochastic integral equations driven by semimartingales under Osgood condition. Open. Math. (electronic only) 13 (2015), 106-134. | DOI | MR | JFM
[24] Park, J. Y., Jeong, J. U.: Existence results for impulsive neutral stochastic functional integro-differential inclusions with infinite delays. Adv. Difference Equ. (electronic only) 2014 (2014), Article ID 17, 17 pages. | DOI | MR | JFM
[25] Protter, P.: Stochastic Integration and Differential Equations. A New Approach. Applications of Mathematics 21. Springer, Berlin (1990). | DOI | MR | JFM
[26] Wang, P., Sun, W.: Practical stability in terms of two measures for set differential equations on time scales. Sci. World J. (2014), (2014), Article ID 241034, 7 pages. | DOI
[27] Yun, Y. S.: On the estimation of approximate solution for SDI. Korean Annals Math. 20 (2003), 63-69.
[28] Yun, Y. S.: The boundedness of solutions for stochastic differential inclusions. Bull. Korean Math. Soc. 40 (2003), 159-165. | DOI | MR | JFM
[29] Yun, Y. S.: The closed property of set of solutions for stochastic differential inclusions. Commun. Korean Math. Soc. 20 (2005), 135-144. | DOI | MR | JFM
Cité par Sources :