A note on the independent domination number versus the domination number in bipartite graphs
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 533-536
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\gamma (G)$ and $i(G)$ be the domination number and the independent domination number of $G$, respectively. Rad and Volkmann posted a conjecture that $i(G)/ \gamma (G) \leq \Delta (G)/2$ for any graph $G$, where $\Delta (G)$ is its maximum degree (see N. J. Rad, L. Volkmann (2013)). In this work, we verify the conjecture for bipartite graphs. Several graph classes attaining the extremal bound and graphs containing odd cycles with the ratio larger than $\Delta (G)/2$ are provided as well.
Let $\gamma (G)$ and $i(G)$ be the domination number and the independent domination number of $G$, respectively. Rad and Volkmann posted a conjecture that $i(G)/ \gamma (G) \leq \Delta (G)/2$ for any graph $G$, where $\Delta (G)$ is its maximum degree (see N. J. Rad, L. Volkmann (2013)). In this work, we verify the conjecture for bipartite graphs. Several graph classes attaining the extremal bound and graphs containing odd cycles with the ratio larger than $\Delta (G)/2$ are provided as well.
DOI :
10.21136/CMJ.2017.0068-16
Classification :
05C05, 05C69
Keywords: domination; independent domination
Keywords: domination; independent domination
@article{10_21136_CMJ_2017_0068_16,
author = {Wang, Shaohui and Wei, Bing},
title = {A note on the independent domination number versus the domination number in bipartite graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {533--536},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0068-16},
mrnumber = {3661058},
zbl = {06738536},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0068-16/}
}
TY - JOUR AU - Wang, Shaohui AU - Wei, Bing TI - A note on the independent domination number versus the domination number in bipartite graphs JO - Czechoslovak Mathematical Journal PY - 2017 SP - 533 EP - 536 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0068-16/ DO - 10.21136/CMJ.2017.0068-16 LA - en ID - 10_21136_CMJ_2017_0068_16 ER -
%0 Journal Article %A Wang, Shaohui %A Wei, Bing %T A note on the independent domination number versus the domination number in bipartite graphs %J Czechoslovak Mathematical Journal %D 2017 %P 533-536 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0068-16/ %R 10.21136/CMJ.2017.0068-16 %G en %F 10_21136_CMJ_2017_0068_16
Wang, Shaohui; Wei, Bing. A note on the independent domination number versus the domination number in bipartite graphs. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 533-536. doi: 10.21136/CMJ.2017.0068-16
Cité par Sources :