Keywords: $q$-binomial coefficient; $q$-binomial theorem; pentagonal number theorem
@article{10_21136_CMJ_2017_0063_16,
author = {Liu, Ji-Cai},
title = {Some finite generalizations of {Euler's} pentagonal number theorem},
journal = {Czechoslovak Mathematical Journal},
pages = {525--531},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0063-16},
mrnumber = {3661057},
zbl = {06738535},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0063-16/}
}
TY - JOUR AU - Liu, Ji-Cai TI - Some finite generalizations of Euler's pentagonal number theorem JO - Czechoslovak Mathematical Journal PY - 2017 SP - 525 EP - 531 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0063-16/ DO - 10.21136/CMJ.2017.0063-16 LA - en ID - 10_21136_CMJ_2017_0063_16 ER -
Liu, Ji-Cai. Some finite generalizations of Euler's pentagonal number theorem. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 525-531. doi: 10.21136/CMJ.2017.0063-16
[1] Andrews, G. E.: The Theory of Partitions. Encyclopedia of Mathematics and Its Applications, Vol. 2. Section: Number Theory. Reading, Advanced Book Program, Addison-Wesley Publishing Company, Massachusetts (1976). | DOI | MR | JFM
[2] Andrews, G. E.: Euler's pentagonal number theorem. Math. Mag. 56 (1983), 279-284. | DOI | MR | JFM
[3] Berkovich, A., Garvan, F. G.: Some observations on Dyson's new symmetries of partitions. J. Comb. Theory, Ser. A 100 (2002), 61-93. | DOI | MR | JFM
[4] Bromwich, T. J.: An Introduction to the Theory of Infinite Series. Chelsea Publishing Company, New York (1991). | JFM
[5] Ekhad, S. B., Zeilberger, D.: The number of solutions of $X^2=0$ in triangular matrices over GF($q$). Electron. J. Comb. 3 (1996), Research paper R2, 2 pages printed version in J. Comb. 3 1996 25-26. | MR | JFM
[6] Petkovšek, M., Wilf, H. S., Zeilberger, D.: $A=B$. With foreword by Donald E. Knuth, A. K. Peters, Wellesley (1996). | MR | JFM
[7] Shanks, D.: A short proof of an identity of Euler. Proc. Am. Math. Soc. 2 (1951), 747-749. | DOI | MR | JFM
[8] Warnaar, S. O.: $q$-hypergeometric proofs of polynomial analogues of the triple product identity, Lebesgue's identity and Euler's pentagonal number theorem. Ramanujan J. 8 (2004), 467-474. | DOI | MR | JFM
Cité par Sources :