Some finite generalizations of Euler's pentagonal number theorem
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 525-531.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Euler's pentagonal number theorem was a spectacular achievement at the time of its discovery, and is still considered to be a beautiful result in number theory and combinatorics. In this paper, we obtain three new finite generalizations of Euler's pentagonal number theorem.
DOI : 10.21136/CMJ.2017.0063-16
Classification : 05A17, 11B65
Keywords: $q$-binomial coefficient; $q$-binomial theorem; pentagonal number theorem
@article{10_21136_CMJ_2017_0063_16,
     author = {Liu, Ji-Cai},
     title = {Some finite generalizations of {Euler's} pentagonal number theorem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {525--531},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2017},
     doi = {10.21136/CMJ.2017.0063-16},
     mrnumber = {3661057},
     zbl = {06738535},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0063-16/}
}
TY  - JOUR
AU  - Liu, Ji-Cai
TI  - Some finite generalizations of Euler's pentagonal number theorem
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 525
EP  - 531
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0063-16/
DO  - 10.21136/CMJ.2017.0063-16
LA  - en
ID  - 10_21136_CMJ_2017_0063_16
ER  - 
%0 Journal Article
%A Liu, Ji-Cai
%T Some finite generalizations of Euler's pentagonal number theorem
%J Czechoslovak Mathematical Journal
%D 2017
%P 525-531
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0063-16/
%R 10.21136/CMJ.2017.0063-16
%G en
%F 10_21136_CMJ_2017_0063_16
Liu, Ji-Cai. Some finite generalizations of Euler's pentagonal number theorem. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 525-531. doi : 10.21136/CMJ.2017.0063-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0063-16/

Cité par Sources :