Some finite generalizations of Euler's pentagonal number theorem
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 525-531 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Euler's pentagonal number theorem was a spectacular achievement at the time of its discovery, and is still considered to be a beautiful result in number theory and combinatorics. In this paper, we obtain three new finite generalizations of Euler's pentagonal number theorem.
Euler's pentagonal number theorem was a spectacular achievement at the time of its discovery, and is still considered to be a beautiful result in number theory and combinatorics. In this paper, we obtain three new finite generalizations of Euler's pentagonal number theorem.
DOI : 10.21136/CMJ.2017.0063-16
Classification : 05A17, 11B65
Keywords: $q$-binomial coefficient; $q$-binomial theorem; pentagonal number theorem
@article{10_21136_CMJ_2017_0063_16,
     author = {Liu, Ji-Cai},
     title = {Some finite generalizations of {Euler's} pentagonal number theorem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {525--531},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.2017.0063-16},
     mrnumber = {3661057},
     zbl = {06738535},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0063-16/}
}
TY  - JOUR
AU  - Liu, Ji-Cai
TI  - Some finite generalizations of Euler's pentagonal number theorem
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 525
EP  - 531
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0063-16/
DO  - 10.21136/CMJ.2017.0063-16
LA  - en
ID  - 10_21136_CMJ_2017_0063_16
ER  - 
%0 Journal Article
%A Liu, Ji-Cai
%T Some finite generalizations of Euler's pentagonal number theorem
%J Czechoslovak Mathematical Journal
%D 2017
%P 525-531
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0063-16/
%R 10.21136/CMJ.2017.0063-16
%G en
%F 10_21136_CMJ_2017_0063_16
Liu, Ji-Cai. Some finite generalizations of Euler's pentagonal number theorem. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 525-531. doi: 10.21136/CMJ.2017.0063-16

[1] Andrews, G. E.: The Theory of Partitions. Encyclopedia of Mathematics and Its Applications, Vol. 2. Section: Number Theory. Reading, Advanced Book Program, Addison-Wesley Publishing Company, Massachusetts (1976). | DOI | MR | JFM

[2] Andrews, G. E.: Euler's pentagonal number theorem. Math. Mag. 56 (1983), 279-284. | DOI | MR | JFM

[3] Berkovich, A., Garvan, F. G.: Some observations on Dyson's new symmetries of partitions. J. Comb. Theory, Ser. A 100 (2002), 61-93. | DOI | MR | JFM

[4] Bromwich, T. J.: An Introduction to the Theory of Infinite Series. Chelsea Publishing Company, New York (1991). | JFM

[5] Ekhad, S. B., Zeilberger, D.: The number of solutions of $X^2=0$ in triangular matrices over GF($q$). Electron. J. Comb. 3 (1996), Research paper R2, 2 pages printed version in J. Comb. 3 1996 25-26. | MR | JFM

[6] Petkovšek, M., Wilf, H. S., Zeilberger, D.: $A=B$. With foreword by Donald E. Knuth, A. K. Peters, Wellesley (1996). | MR | JFM

[7] Shanks, D.: A short proof of an identity of Euler. Proc. Am. Math. Soc. 2 (1951), 747-749. | DOI | MR | JFM

[8] Warnaar, S. O.: $q$-hypergeometric proofs of polynomial analogues of the triple product identity, Lebesgue's identity and Euler's pentagonal number theorem. Ramanujan J. 8 (2004), 467-474. | DOI | MR | JFM

Cité par Sources :