Some properties of generalized reduced Verma modules over $\mathbb {Z}$-graded modular Lie superalgebras
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 699-713
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study some properties of generalized reduced Verma modules over $\mathbb {Z}$-graded modular Lie superalgebras. Some properties of the generalized reduced Verma modules and coinduced modules are obtained. Moreover, invariant forms on the generalized reduced Verma modules are considered. In particular, for $\mathbb {Z}$-graded modular Lie superalgebras of Cartan type we prove that generalized reduced Verma modules are isomorphic to mixed products of modules.
We study some properties of generalized reduced Verma modules over $\mathbb {Z}$-graded modular Lie superalgebras. Some properties of the generalized reduced Verma modules and coinduced modules are obtained. Moreover, invariant forms on the generalized reduced Verma modules are considered. In particular, for $\mathbb {Z}$-graded modular Lie superalgebras of Cartan type we prove that generalized reduced Verma modules are isomorphic to mixed products of modules.
DOI : 10.21136/CMJ.2017.0050-16
Classification : 17B05, 17B10, 17B50
Keywords: modular Lie superalgebra; generalized reduced Verma module; coinduced module; invariant form; mixed product
@article{10_21136_CMJ_2017_0050_16,
     author = {Zheng, Keli and Zhang, Yongzheng},
     title = {Some properties of generalized reduced {Verma} modules over $\mathbb {Z}$-graded modular {Lie} superalgebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {699--713},
     year = {2017},
     volume = {67},
     number = {3},
     doi = {10.21136/CMJ.2017.0050-16},
     mrnumber = {3697910},
     zbl = {06770124},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0050-16/}
}
TY  - JOUR
AU  - Zheng, Keli
AU  - Zhang, Yongzheng
TI  - Some properties of generalized reduced Verma modules over $\mathbb {Z}$-graded modular Lie superalgebras
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 699
EP  - 713
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0050-16/
DO  - 10.21136/CMJ.2017.0050-16
LA  - en
ID  - 10_21136_CMJ_2017_0050_16
ER  - 
%0 Journal Article
%A Zheng, Keli
%A Zhang, Yongzheng
%T Some properties of generalized reduced Verma modules over $\mathbb {Z}$-graded modular Lie superalgebras
%J Czechoslovak Mathematical Journal
%D 2017
%P 699-713
%V 67
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0050-16/
%R 10.21136/CMJ.2017.0050-16
%G en
%F 10_21136_CMJ_2017_0050_16
Zheng, Keli; Zhang, Yongzheng. Some properties of generalized reduced Verma modules over $\mathbb {Z}$-graded modular Lie superalgebras. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 699-713. doi: 10.21136/CMJ.2017.0050-16

[1] Bernshtein, I. N., Gel'fand, I. M., Gel'fand, S. I.: Structre of representations generated by vectors of highest weight. Funct. Anal. Appl. 5 1-8. (1971), English. Russian original translation from Funkts. Anal. Prilozh. 5 1971 1-9. | DOI | MR | JFM

[2] Bernshtein, I. N., Gel'fand, I. M., Gel'fand, S. I.: Differential operators on the base affine space and a study of $\frak g$-modules. Lie Groups and Their Representations Proc. Summer Sch. Bolyai Janos Math. Soc., Budapest, 1971; Halsted, New York (1975), 21-64. | MR | JFM

[3] Cheng, Y., Su, Y.: Generalized Verma modules over some Block algebras. Front. Math. China 3 (2008), 37-47. | DOI | MR

[4] Chiu, S.: The invariant forms on the graded modules of the graded Cartan type Lie algebras. Chin. Ann. Math., Ser. B 13 (1992), 16-24. | MR | JFM

[5] Coleman, A. J., Futorny, V. M.: Stratified $L$-modules. J. Algebra 163 (1994), 219-234. | DOI | MR | JFM

[6] Dixmier, J.: Algèbres Enveloppantes. Gauthier-Villars, Paris (1974), French. | MR | JFM

[7] Farnsteiner, R.: Extension functors of modular Lie algebras. Math. Ann. 288 (1990), 713-730. | DOI | MR | JFM

[8] Farnsteiner, R., Strade, H.: Shapiro's lemma and its consequences in the cohomology theory of modular Lie algebras. Math. Z. 206 (1991), 153-168. | DOI | MR | JFM

[9] Futorny, V., Mazorchuk, V.: Structure of $\alpha$-stratified modules for finite-dimensional Lie algebras. I. J. Algebra 183 (1996), 456-482. | DOI | MR | JFM

[10] Kac, V. G.: Lie superalgebras. Adv. Math. 26 (1977), 8-96. | DOI | MR | JFM

[11] Khomenko, A., Mazorchuk, V.: On the determinant of Shapovalov form for generalized Verma modules. J. Algebra 215 (1999), 318-329. | DOI | MR | JFM

[12] Khomenko, O., Mazorchuk, V.: Generalized Verma modules induced from $sl(2,\Bbb C)$ and associated Verma modules. J. Algebra 242 (2001), 561-576. | DOI | MR | JFM

[13] Mazorchuk, V.: On the structure of an $\alpha$-stratified generalized Verma module over Lie algebra $sl(n,\mathbb C)$. Manuscr. Math. 88 (1995), 59-72. | DOI | MR | JFM

[14] Mazorchuk, V. S., Ovsienko, S. A.: Submodule structure of generalized Verma modules induced from generic Gelfand-Zetlin modules. Algebr. Represent. Theory 1 (1998), 3-26. | DOI | MR | JFM

[15] Ross, L. E.: Representations of graded Lie algebras. Trans. Am. Math. Soc. 120 (1965), 17-23. | DOI | MR | JFM

[16] Scheunert, M.: The Theory of Lie Superalgebras. An Introduction. Lecture Notes in Mathematics 716, Springer, Berlin (1979). | DOI | MR | JFM

[17] Shen, G.: Graded modules of graded Lie algebras of Cartan type. I: Mixed products of modules. Sci. Sin., Ser. A 29 (1986), 570-581. | MR | JFM

[18] Shen, G.: Graded modules of graded Lie algebras of Cartan type. II: Positive and negative graded modules. Sci. Sin., Ser. A 29 (1986), 1009-1019. | MR | JFM

[19] Shen, G.: Graded modules of graded Lie algebras of Cartan type. III: Irreducible modules. Chin. Ann. Math., Ser. B 9 (1988), 404-417. | MR | JFM

[20] Verma, D.-N.: Structure of certain induced representations of complex semisimple Lie algebras. Bull. Am. Math. Soc. 74 (1968), 160-166 errata ibid. 74 1968 628. | DOI | MR | JFM

[21] Wang, Y., Zhang, Y.: Derivation algebra $ Der(H)$ and central extensions of Lie superalgebras. Commun. Algebra 32 (2004), 4117-4131. | DOI | MR | JFM

[22] Zhang, Y.: Graded modules of the Cartan-type $\bold Z$-graded Lie superalgebras $W(n)$ and $S(n)$. Kexue Tongbao 40 (1995), 1829-1832 Chinese. | MR

[23] Zhang, Y.: $\mathbb Z$-graded module of Lie superalgebra $H(n)$ of Cartan type. Chin. Sci. Bull. 41 (1996), 813-817. | MR | JFM

[24] Zhang, Y.: Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic. Chin. Sci. Bull. 42 (1997), 720-724. | DOI | MR | JFM

[25] Zhang, Y.: Mixed products of modules of infinite-dimensional Lie superalgebras of Cartan type. Chin. Ann. Math., Ser. A 18 (1997), 725-732. | MR | JFM

[26] Zhang, Y., Fu, H.: Finite-dimensional Hamiltonian Lie superalgebra. Commun. Algebra 30 (2002), 2651-2673. | DOI | MR | JFM

Cité par Sources :