Keywords: modular Lie superalgebra; generalized reduced Verma module; coinduced module; invariant form; mixed product
@article{10_21136_CMJ_2017_0050_16,
author = {Zheng, Keli and Zhang, Yongzheng},
title = {Some properties of generalized reduced {Verma} modules over $\mathbb {Z}$-graded modular {Lie} superalgebras},
journal = {Czechoslovak Mathematical Journal},
pages = {699--713},
year = {2017},
volume = {67},
number = {3},
doi = {10.21136/CMJ.2017.0050-16},
mrnumber = {3697910},
zbl = {06770124},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0050-16/}
}
TY - JOUR
AU - Zheng, Keli
AU - Zhang, Yongzheng
TI - Some properties of generalized reduced Verma modules over $\mathbb {Z}$-graded modular Lie superalgebras
JO - Czechoslovak Mathematical Journal
PY - 2017
SP - 699
EP - 713
VL - 67
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0050-16/
DO - 10.21136/CMJ.2017.0050-16
LA - en
ID - 10_21136_CMJ_2017_0050_16
ER -
%0 Journal Article
%A Zheng, Keli
%A Zhang, Yongzheng
%T Some properties of generalized reduced Verma modules over $\mathbb {Z}$-graded modular Lie superalgebras
%J Czechoslovak Mathematical Journal
%D 2017
%P 699-713
%V 67
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0050-16/
%R 10.21136/CMJ.2017.0050-16
%G en
%F 10_21136_CMJ_2017_0050_16
Zheng, Keli; Zhang, Yongzheng. Some properties of generalized reduced Verma modules over $\mathbb {Z}$-graded modular Lie superalgebras. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 699-713. doi: 10.21136/CMJ.2017.0050-16
[1] Bernshtein, I. N., Gel'fand, I. M., Gel'fand, S. I.: Structre of representations generated by vectors of highest weight. Funct. Anal. Appl. 5 1-8. (1971), English. Russian original translation from Funkts. Anal. Prilozh. 5 1971 1-9. | DOI | MR | JFM
[2] Bernshtein, I. N., Gel'fand, I. M., Gel'fand, S. I.: Differential operators on the base affine space and a study of $\frak g$-modules. Lie Groups and Their Representations Proc. Summer Sch. Bolyai Janos Math. Soc., Budapest, 1971; Halsted, New York (1975), 21-64. | MR | JFM
[3] Cheng, Y., Su, Y.: Generalized Verma modules over some Block algebras. Front. Math. China 3 (2008), 37-47. | DOI | MR
[4] Chiu, S.: The invariant forms on the graded modules of the graded Cartan type Lie algebras. Chin. Ann. Math., Ser. B 13 (1992), 16-24. | MR | JFM
[5] Coleman, A. J., Futorny, V. M.: Stratified $L$-modules. J. Algebra 163 (1994), 219-234. | DOI | MR | JFM
[6] Dixmier, J.: Algèbres Enveloppantes. Gauthier-Villars, Paris (1974), French. | MR | JFM
[7] Farnsteiner, R.: Extension functors of modular Lie algebras. Math. Ann. 288 (1990), 713-730. | DOI | MR | JFM
[8] Farnsteiner, R., Strade, H.: Shapiro's lemma and its consequences in the cohomology theory of modular Lie algebras. Math. Z. 206 (1991), 153-168. | DOI | MR | JFM
[9] Futorny, V., Mazorchuk, V.: Structure of $\alpha$-stratified modules for finite-dimensional Lie algebras. I. J. Algebra 183 (1996), 456-482. | DOI | MR | JFM
[10] Kac, V. G.: Lie superalgebras. Adv. Math. 26 (1977), 8-96. | DOI | MR | JFM
[11] Khomenko, A., Mazorchuk, V.: On the determinant of Shapovalov form for generalized Verma modules. J. Algebra 215 (1999), 318-329. | DOI | MR | JFM
[12] Khomenko, O., Mazorchuk, V.: Generalized Verma modules induced from $sl(2,\Bbb C)$ and associated Verma modules. J. Algebra 242 (2001), 561-576. | DOI | MR | JFM
[13] Mazorchuk, V.: On the structure of an $\alpha$-stratified generalized Verma module over Lie algebra $sl(n,\mathbb C)$. Manuscr. Math. 88 (1995), 59-72. | DOI | MR | JFM
[14] Mazorchuk, V. S., Ovsienko, S. A.: Submodule structure of generalized Verma modules induced from generic Gelfand-Zetlin modules. Algebr. Represent. Theory 1 (1998), 3-26. | DOI | MR | JFM
[15] Ross, L. E.: Representations of graded Lie algebras. Trans. Am. Math. Soc. 120 (1965), 17-23. | DOI | MR | JFM
[16] Scheunert, M.: The Theory of Lie Superalgebras. An Introduction. Lecture Notes in Mathematics 716, Springer, Berlin (1979). | DOI | MR | JFM
[17] Shen, G.: Graded modules of graded Lie algebras of Cartan type. I: Mixed products of modules. Sci. Sin., Ser. A 29 (1986), 570-581. | MR | JFM
[18] Shen, G.: Graded modules of graded Lie algebras of Cartan type. II: Positive and negative graded modules. Sci. Sin., Ser. A 29 (1986), 1009-1019. | MR | JFM
[19] Shen, G.: Graded modules of graded Lie algebras of Cartan type. III: Irreducible modules. Chin. Ann. Math., Ser. B 9 (1988), 404-417. | MR | JFM
[20] Verma, D.-N.: Structure of certain induced representations of complex semisimple Lie algebras. Bull. Am. Math. Soc. 74 (1968), 160-166 errata ibid. 74 1968 628. | DOI | MR | JFM
[21] Wang, Y., Zhang, Y.: Derivation algebra $ Der(H)$ and central extensions of Lie superalgebras. Commun. Algebra 32 (2004), 4117-4131. | DOI | MR | JFM
[22] Zhang, Y.: Graded modules of the Cartan-type $\bold Z$-graded Lie superalgebras $W(n)$ and $S(n)$. Kexue Tongbao 40 (1995), 1829-1832 Chinese. | MR
[23] Zhang, Y.: $\mathbb Z$-graded module of Lie superalgebra $H(n)$ of Cartan type. Chin. Sci. Bull. 41 (1996), 813-817. | MR | JFM
[24] Zhang, Y.: Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic. Chin. Sci. Bull. 42 (1997), 720-724. | DOI | MR | JFM
[25] Zhang, Y.: Mixed products of modules of infinite-dimensional Lie superalgebras of Cartan type. Chin. Ann. Math., Ser. A 18 (1997), 725-732. | MR | JFM
[26] Zhang, Y., Fu, H.: Finite-dimensional Hamiltonian Lie superalgebra. Commun. Algebra 30 (2002), 2651-2673. | DOI | MR | JFM
Cité par Sources :