Keywords: invariant ring; transvection; generalized transvection group
@article{10_21136_CMJ_2017_0044_16,
author = {Han, Xiang and Nan, Jizhu and Gupta, Chander K.},
title = {Invariants of finite groups generated by generalized transvections in the modular case},
journal = {Czechoslovak Mathematical Journal},
pages = {655--698},
year = {2017},
volume = {67},
number = {3},
doi = {10.21136/CMJ.2017.0044-16},
mrnumber = {3697909},
zbl = {06770123},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0044-16/}
}
TY - JOUR AU - Han, Xiang AU - Nan, Jizhu AU - Gupta, Chander K. TI - Invariants of finite groups generated by generalized transvections in the modular case JO - Czechoslovak Mathematical Journal PY - 2017 SP - 655 EP - 698 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0044-16/ DO - 10.21136/CMJ.2017.0044-16 LA - en ID - 10_21136_CMJ_2017_0044_16 ER -
%0 Journal Article %A Han, Xiang %A Nan, Jizhu %A Gupta, Chander K. %T Invariants of finite groups generated by generalized transvections in the modular case %J Czechoslovak Mathematical Journal %D 2017 %P 655-698 %V 67 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0044-16/ %R 10.21136/CMJ.2017.0044-16 %G en %F 10_21136_CMJ_2017_0044_16
Han, Xiang; Nan, Jizhu; Gupta, Chander K. Invariants of finite groups generated by generalized transvections in the modular case. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 655-698. doi: 10.21136/CMJ.2017.0044-16
[1] Bass, H.: On the ubiquity of Gorenstein rings. Math. Z. 82 (1963), 8-28. | DOI | MR | JFM
[2] Bertin, M.-J.: Anneaux d'invariants d'anneaux de polynômes, en caractéristique $p$. C. R. Acad. Sci., Paris, Sér. A 264 (1967), 653-656 French. | MR | JFM
[3] Braun, A.: On the Gorenstein property for modular invariants. J. Algebra 345 (2011), 81-99. | DOI | MR | JFM
[4] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). | DOI | MR | JFM
[5] Campbell, H. E. A., Geramita, A. V., Hughes, I. P., Shank, R. J., Wehlau, D. L.: Non-Cohen-Macaulay vector invariants and a Noether bound for a Gorenstein ring of invariants. Can. Math. Bull. 42 (1999), 155-161. | DOI | MR | JFM
[6] Derksen, H., Kemper, G.: Computational Invariant Theory. Encyclopaedia of Mathematical Sciences 130, Invariant Theory and Algebraic Transformation Groups 1, Springer, Berlin (2002). | DOI | MR | JFM
[7] Dickson, L. E.: Invariants of binary forms under modular transformations. Amer. M. S. Trans. 8 (1907), 205-232 \99999JFM99999 38.0147.02. | DOI | MR
[8] Han, X., Nan, J., Nam, K.: The invariants of generalized transvection groups in the modular case. Commun. Math. Res. 33 (2017), 160-176. | MR
[9] Hochster, M., Eagon, J. A.: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Am. J. Math. 93 (1971), 1020-1058. | DOI | MR | JFM
[10] Huang, J.: A gluing construction for polynomial invariants. J. Algebra 328 (2011), 432-442. | DOI | MR | JFM
[11] Kemper, G., Malle, G.: The finite irreducible linear groups with polynomial ring of invariants. Transform. Groups 2 (1997), 57-89. | DOI | MR | JFM
[12] Milnor, J. W.: Introduction to Algebraic $K$-Theory. Annals of Mathematics Studies 72, Princeton University Press and University of Tokyo Press, Princeton (1971). | DOI | MR | JFM
[13] Nakajima, H.: Invariants of finite groups generated by pseudo-reflections in positive characteristic. Tsukuba J. Math. 3 (1979), 109-122. | DOI | MR | JFM
[14] Nakajima, H.: Modular representations of abelian groups with regular rings of invariants. Nagoya Math. J. 86 (1982), 229-248. | DOI | MR | JFM
[15] Nakajima, H.: Regular rings of invariants of unipotent groups. J. Algebra 85 (1983), 253-286. | DOI | MR | JFM
[16] Neusel, M. D., Smith, L.: Polynomial invariants of groups associated to configurations of hyperplanes over finite fields. J. Pure Appl. Algebra 122 (1997), 87-105. | DOI | MR | JFM
[17] Neusel, M. D., Smith, L.: Invariant Theory of Finite Groups. Mathematical Surveys and Monographs 94, American Mathematical Society, Providence (2002). | DOI | MR | JFM
[18] Smith, L.: Some rings of invariants that are Cohen-Macaulay. Can. Math. Bull. 39 (1996), 238-240. | DOI | MR | JFM
[19] Smith, L., Stong, R. E.: On the invariant theory of finite groups: Orbit polynomials and splitting principles. J. Algebra 110 (1987), 134-157. | DOI | MR | JFM
[20] Stanley, R. P.: Invariants of finite groups and their applications to combinatorics. Bull. Am. Math. Soc., New Ser. 1 (1979), 475-511. | DOI | MR | JFM
[21] Steinberg, R.: On Dickson's theorem on invariants. J. Fac. Sci., Univ. Tokyo, Sect. I A 34 (1987), 699-707. | MR | JFM
[22] You, H., Lan, J.: Decomposition of matrices into 2-involutions. Linear Algebra Appl. 186 (1993), 235-253. | DOI | MR | JFM
Cité par Sources :