$\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 515-523 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $D$ be a $\mathcal {C}^d$ $q$-convex intersection, $d\geq 2$, $0\le q\le n-1$, in a complex manifold $X$ of complex dimension $n$, $n\ge 2$, and let $E$ be a holomorphic vector bundle of rank $N$ over $X$. In this paper, $\mathcal C^k$-estimates, $k=2, 3, \dots , \infty $, for solutions to the \hbox {$\bar \partial $-equation} with small loss of smoothness are obtained for $E$-valued $(0, s)$-forms on $D$ when $ n-q\le s\le n$. In addition, we solve the $\bar \partial $-equation with a support condition in $\mathcal C^k$-spaces. More precisely, we prove that for a $\bar \partial $-closed form $f$ in $\mathcal C_{0,q}^{k}(X\setminus D, E)$, $1\le q\le n-2$, $n\ge 3$, with compact support and for $\varepsilon $ with $0\varepsilon 1$ there exists a form $u$ in $\mathcal C_{0,q-1}^{k-\varepsilon }(X\setminus D, E)$ with compact support such that $\bar {\partial }u=f$ in $X\setminus \overline D$. Applications are given for a separation theorem of Andreotti-Vesentini type in $\mathcal C^k$-setting and for the solvability of the $\bar \partial $-equation for currents.
Let $D$ be a $\mathcal {C}^d$ $q$-convex intersection, $d\geq 2$, $0\le q\le n-1$, in a complex manifold $X$ of complex dimension $n$, $n\ge 2$, and let $E$ be a holomorphic vector bundle of rank $N$ over $X$. In this paper, $\mathcal C^k$-estimates, $k=2, 3, \dots , \infty $, for solutions to the \hbox {$\bar \partial $-equation} with small loss of smoothness are obtained for $E$-valued $(0, s)$-forms on $D$ when $ n-q\le s\le n$. In addition, we solve the $\bar \partial $-equation with a support condition in $\mathcal C^k$-spaces. More precisely, we prove that for a $\bar \partial $-closed form $f$ in $\mathcal C_{0,q}^{k}(X\setminus D, E)$, $1\le q\le n-2$, $n\ge 3$, with compact support and for $\varepsilon $ with $0\varepsilon 1$ there exists a form $u$ in $\mathcal C_{0,q-1}^{k-\varepsilon }(X\setminus D, E)$ with compact support such that $\bar {\partial }u=f$ in $X\setminus \overline D$. Applications are given for a separation theorem of Andreotti-Vesentini type in $\mathcal C^k$-setting and for the solvability of the $\bar \partial $-equation for currents.
DOI : 10.21136/CMJ.2017.0039-16
Classification : 32F10, 32W05
Keywords: $\bar \partial $-equation; $q$-convexity; $\mathcal C^k$-estimate
@article{10_21136_CMJ_2017_0039_16,
     author = {Khidr, Shaban and Abdelkader, Osama},
     title = {$\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition},
     journal = {Czechoslovak Mathematical Journal},
     pages = {515--523},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.2017.0039-16},
     mrnumber = {3661056},
     zbl = {06738534},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0039-16/}
}
TY  - JOUR
AU  - Khidr, Shaban
AU  - Abdelkader, Osama
TI  - $\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 515
EP  - 523
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0039-16/
DO  - 10.21136/CMJ.2017.0039-16
LA  - en
ID  - 10_21136_CMJ_2017_0039_16
ER  - 
%0 Journal Article
%A Khidr, Shaban
%A Abdelkader, Osama
%T $\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition
%J Czechoslovak Mathematical Journal
%D 2017
%P 515-523
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0039-16/
%R 10.21136/CMJ.2017.0039-16
%G en
%F 10_21136_CMJ_2017_0039_16
Khidr, Shaban; Abdelkader, Osama. $\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 515-523. doi: 10.21136/CMJ.2017.0039-16

[1] Andreotti, A., Hill, C. D.: E. E. Levi convexity and the Hans Lewy problem I: Reduction to vanishing theorems. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 26 (1972), 325-363. | MR | JFM

[2] Andreotti, A., Hill, C. D.: E. E. Levi convexity and the Hans Lewy problem II: Vanishing theorems. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 26 (1972), 747-806. | MR | JFM

[3] Barkatou, M.-Y., Khidr, S.: Global solution with $\mathcal C^k$-estimates for $\overline\partial$-equation on $q$-convex intersections. Math. Nachr. 284 (2011), 2024-2031. | DOI | MR | JFM

[4] Brinkschulte, J.: The $\overline\partial$-problem with support conditions on some weakly pseudoconvex domains. Ark. Mat. 42 (2004), 259-282. | DOI | MR | JFM

[5] Grauert, H.: Kantenkohomologie. Compos. Math. 44 (1981), 79-101 German. | MR | JFM

[6] Henkin, G. M., Leiterer, J.: Andreotti-Grauert Theory by Integral Formulas. Progress in Mathematics 74, Birkhäuser, Boston (1988). | DOI | MR | JFM

[7] Khidr, S., Barkatou, M.-Y.: Global solutions with $\mathcal C^k$-estimates for $\bar\partial$-equations on $q$-concave intersections. Electron. J. Differ. Equ. 2013 (2013), Paper No. 62, 10 pages. | MR | JFM

[8] Laurent-Thiébaut, C., Leiterer, J.: The Andreotti-Vesentini separation theorem with $C^k$ estimates and extension of CR-forms. Several Complex Variables, Proc. Mittag-Leffler Inst., Stockholm, 1987/1988 Math. Notes 38, Princeton Univ. Press, Princeton (1993), 416-439. | MR | JFM

[9] Lieb, I., Range, R. M.: Lösungsoperatoren für den Cauchy-Riemann-Komplex mit $\mathcal C^k$-Abschätzungen. Math. Ann. 253 (1980), 145-164 German. | DOI | MR | JFM

[10] Michel, J.: Randregularität des $\overline\partial$-Problems für stückweise streng pseudokonvexe Gebiete in $\mathbb C^n$. Math. Ann. 280 (1988), 45-68 German. | DOI | MR | JFM

[11] Michel, J., Perotti, A.: $C^k$-regularity for the $\overline\partial$-equation on strictly pseudoconvex domains with piecewise smooth boundaries. Math. Z. 203 (1990), 415-427. | DOI | MR | JFM

[12] Ricard, H.: Estimations $\mathcal C^k$ pour l'opérateur de Cauchy-Riemann sur des domaines à coins $q$-convexes et $q$-concaves. Math. Z. 244 (2003), 349-398 French. | DOI | MR | JFM

[13] Sambou, S.: Résolution du $\overline\partial$ pour les courants prolongeables. Math. Nachr. 235 (2002), 179-190 French. | DOI | MR | JFM

[14] Sambou, S.: Résolution du $\overline\partial$ pour les courants prolongeables définis dans un anneau. Ann. Fac. Sci. Toulouse, VI. Sér., Math. 11 (2002), 105-129 French. | DOI | MR | JFM

Cité par Sources :