Keywords: $\bar \partial $-equation; $q$-convexity; $\mathcal C^k$-estimate
@article{10_21136_CMJ_2017_0039_16,
author = {Khidr, Shaban and Abdelkader, Osama},
title = {$\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition},
journal = {Czechoslovak Mathematical Journal},
pages = {515--523},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0039-16},
mrnumber = {3661056},
zbl = {06738534},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0039-16/}
}
TY - JOUR AU - Khidr, Shaban AU - Abdelkader, Osama TI - $\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition JO - Czechoslovak Mathematical Journal PY - 2017 SP - 515 EP - 523 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0039-16/ DO - 10.21136/CMJ.2017.0039-16 LA - en ID - 10_21136_CMJ_2017_0039_16 ER -
%0 Journal Article %A Khidr, Shaban %A Abdelkader, Osama %T $\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition %J Czechoslovak Mathematical Journal %D 2017 %P 515-523 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0039-16/ %R 10.21136/CMJ.2017.0039-16 %G en %F 10_21136_CMJ_2017_0039_16
Khidr, Shaban; Abdelkader, Osama. $\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 515-523. doi: 10.21136/CMJ.2017.0039-16
[1] Andreotti, A., Hill, C. D.: E. E. Levi convexity and the Hans Lewy problem I: Reduction to vanishing theorems. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 26 (1972), 325-363. | MR | JFM
[2] Andreotti, A., Hill, C. D.: E. E. Levi convexity and the Hans Lewy problem II: Vanishing theorems. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 26 (1972), 747-806. | MR | JFM
[3] Barkatou, M.-Y., Khidr, S.: Global solution with $\mathcal C^k$-estimates for $\overline\partial$-equation on $q$-convex intersections. Math. Nachr. 284 (2011), 2024-2031. | DOI | MR | JFM
[4] Brinkschulte, J.: The $\overline\partial$-problem with support conditions on some weakly pseudoconvex domains. Ark. Mat. 42 (2004), 259-282. | DOI | MR | JFM
[5] Grauert, H.: Kantenkohomologie. Compos. Math. 44 (1981), 79-101 German. | MR | JFM
[6] Henkin, G. M., Leiterer, J.: Andreotti-Grauert Theory by Integral Formulas. Progress in Mathematics 74, Birkhäuser, Boston (1988). | DOI | MR | JFM
[7] Khidr, S., Barkatou, M.-Y.: Global solutions with $\mathcal C^k$-estimates for $\bar\partial$-equations on $q$-concave intersections. Electron. J. Differ. Equ. 2013 (2013), Paper No. 62, 10 pages. | MR | JFM
[8] Laurent-Thiébaut, C., Leiterer, J.: The Andreotti-Vesentini separation theorem with $C^k$ estimates and extension of CR-forms. Several Complex Variables, Proc. Mittag-Leffler Inst., Stockholm, 1987/1988 Math. Notes 38, Princeton Univ. Press, Princeton (1993), 416-439. | MR | JFM
[9] Lieb, I., Range, R. M.: Lösungsoperatoren für den Cauchy-Riemann-Komplex mit $\mathcal C^k$-Abschätzungen. Math. Ann. 253 (1980), 145-164 German. | DOI | MR | JFM
[10] Michel, J.: Randregularität des $\overline\partial$-Problems für stückweise streng pseudokonvexe Gebiete in $\mathbb C^n$. Math. Ann. 280 (1988), 45-68 German. | DOI | MR | JFM
[11] Michel, J., Perotti, A.: $C^k$-regularity for the $\overline\partial$-equation on strictly pseudoconvex domains with piecewise smooth boundaries. Math. Z. 203 (1990), 415-427. | DOI | MR | JFM
[12] Ricard, H.: Estimations $\mathcal C^k$ pour l'opérateur de Cauchy-Riemann sur des domaines à coins $q$-convexes et $q$-concaves. Math. Z. 244 (2003), 349-398 French. | DOI | MR | JFM
[13] Sambou, S.: Résolution du $\overline\partial$ pour les courants prolongeables. Math. Nachr. 235 (2002), 179-190 French. | DOI | MR | JFM
[14] Sambou, S.: Résolution du $\overline\partial$ pour les courants prolongeables définis dans un anneau. Ann. Fac. Sci. Toulouse, VI. Sér., Math. 11 (2002), 105-129 French. | DOI | MR | JFM
Cité par Sources :