$\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 515-523
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $D$ be a $\mathcal {C}^d$ $q$-convex intersection, $d\geq 2$, $0\le q\le n-1$, in a complex manifold $X$ of complex dimension $n$, $n\ge 2$, and let $E$ be a holomorphic vector bundle of rank $N$ over $X$. In this paper, $\mathcal C^k$-estimates, $k=2, 3, \dots , \infty $, for solutions to the \hbox {$\bar \partial $-equation} with small loss of smoothness are obtained for $E$-valued $(0, s)$-forms on $D$ when $ n-q\le s\le n$. In addition, we solve the $\bar \partial $-equation with a support condition in $\mathcal C^k$-spaces. More precisely, we prove that for a $\bar \partial $-closed form $f$ in $\mathcal C_{0,q}^{k}(X\setminus D, E)$, $1\le q\le n-2$, $n\ge 3$, with compact support and for $\varepsilon $ with $0\varepsilon 1$ there exists a form $u$ in $\mathcal C_{0,q-1}^{k-\varepsilon }(X\setminus D, E)$ with compact support such that $\bar {\partial }u=f$ in $X\setminus \overline D$. Applications are given for a separation theorem of Andreotti-Vesentini type in $\mathcal C^k$-setting and for the solvability of the $\bar \partial $-equation for currents.
Let $D$ be a $\mathcal {C}^d$ $q$-convex intersection, $d\geq 2$, $0\le q\le n-1$, in a complex manifold $X$ of complex dimension $n$, $n\ge 2$, and let $E$ be a holomorphic vector bundle of rank $N$ over $X$. In this paper, $\mathcal C^k$-estimates, $k=2, 3, \dots , \infty $, for solutions to the \hbox {$\bar \partial $-equation} with small loss of smoothness are obtained for $E$-valued $(0, s)$-forms on $D$ when $ n-q\le s\le n$. In addition, we solve the $\bar \partial $-equation with a support condition in $\mathcal C^k$-spaces. More precisely, we prove that for a $\bar \partial $-closed form $f$ in $\mathcal C_{0,q}^{k}(X\setminus D, E)$, $1\le q\le n-2$, $n\ge 3$, with compact support and for $\varepsilon $ with $0\varepsilon 1$ there exists a form $u$ in $\mathcal C_{0,q-1}^{k-\varepsilon }(X\setminus D, E)$ with compact support such that $\bar {\partial }u=f$ in $X\setminus \overline D$. Applications are given for a separation theorem of Andreotti-Vesentini type in $\mathcal C^k$-setting and for the solvability of the $\bar \partial $-equation for currents.
DOI :
10.21136/CMJ.2017.0039-16
Classification :
32F10, 32W05
Keywords: $\bar \partial $-equation; $q$-convexity; $\mathcal C^k$-estimate
Keywords: $\bar \partial $-equation; $q$-convexity; $\mathcal C^k$-estimate
@article{10_21136_CMJ_2017_0039_16,
author = {Khidr, Shaban and Abdelkader, Osama},
title = {$\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition},
journal = {Czechoslovak Mathematical Journal},
pages = {515--523},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0039-16},
mrnumber = {3661056},
zbl = {06738534},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0039-16/}
}
TY - JOUR AU - Khidr, Shaban AU - Abdelkader, Osama TI - $\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition JO - Czechoslovak Mathematical Journal PY - 2017 SP - 515 EP - 523 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0039-16/ DO - 10.21136/CMJ.2017.0039-16 LA - en ID - 10_21136_CMJ_2017_0039_16 ER -
%0 Journal Article %A Khidr, Shaban %A Abdelkader, Osama %T $\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition %J Czechoslovak Mathematical Journal %D 2017 %P 515-523 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0039-16/ %R 10.21136/CMJ.2017.0039-16 %G en %F 10_21136_CMJ_2017_0039_16
Khidr, Shaban; Abdelkader, Osama. $\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 515-523. doi: 10.21136/CMJ.2017.0039-16
Cité par Sources :