Equivalent quasi-norms and atomic decomposition of weak Triebel-Lizorkin spaces
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 497-513
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Recently, the weak Triebel-Lizorkin space was introduced by Grafakos and He, which includes the standard Triebel-Lizorkin space as a subset. The latter has a wide applications in aspects of analysis. In this paper, the authors firstly give equivalent quasi-norms of weak Triebel-Lizorkin spaces in terms of Peetre's maximal functions. As an application of those equivalent quasi-norms, an atomic decomposition of weak Triebel-Lizorkin spaces is given.
Recently, the weak Triebel-Lizorkin space was introduced by Grafakos and He, which includes the standard Triebel-Lizorkin space as a subset. The latter has a wide applications in aspects of analysis. In this paper, the authors firstly give equivalent quasi-norms of weak Triebel-Lizorkin spaces in terms of Peetre's maximal functions. As an application of those equivalent quasi-norms, an atomic decomposition of weak Triebel-Lizorkin spaces is given.
DOI : 10.21136/CMJ.2017.0037-16
Classification : 42B25, 42B35, 46E35
Keywords: weak Lebesgue space; Triebel-Lizorkin space; equivalent norm; maximal function; atom
@article{10_21136_CMJ_2017_0037_16,
     author = {Li, Wenchang and Xu, Jingshi},
     title = {Equivalent quasi-norms and atomic decomposition of weak {Triebel-Lizorkin} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {497--513},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.2017.0037-16},
     mrnumber = {3661055},
     zbl = {06738533},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0037-16/}
}
TY  - JOUR
AU  - Li, Wenchang
AU  - Xu, Jingshi
TI  - Equivalent quasi-norms and atomic decomposition of weak Triebel-Lizorkin spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 497
EP  - 513
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0037-16/
DO  - 10.21136/CMJ.2017.0037-16
LA  - en
ID  - 10_21136_CMJ_2017_0037_16
ER  - 
%0 Journal Article
%A Li, Wenchang
%A Xu, Jingshi
%T Equivalent quasi-norms and atomic decomposition of weak Triebel-Lizorkin spaces
%J Czechoslovak Mathematical Journal
%D 2017
%P 497-513
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0037-16/
%R 10.21136/CMJ.2017.0037-16
%G en
%F 10_21136_CMJ_2017_0037_16
Li, Wenchang; Xu, Jingshi. Equivalent quasi-norms and atomic decomposition of weak Triebel-Lizorkin spaces. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 497-513. doi: 10.21136/CMJ.2017.0037-16

[1] Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258 (2010), 1628-1655. | DOI | MR | JFM

[2] Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256 (2009), 1731-1768. | DOI | MR | JFM

[3] Drihem, D.: Some embeddings and equivalent norms of the $\mathcal L^{\lambda,s}_{p,q}$ spaces. Funct. Approximatio, Comment. Math. 41 (2009), 15-40. | DOI | MR | JFM

[4] Drihem, D.: Characterizations of Besov-type and Triebel-Lizorkin-type spaces by differences. J. Funct. Spaces Appl. 2012 (2012), Article ID 328908, 24 pages. | DOI | MR | JFM

[5] Drihem, D.: Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces. Sci. China, Math. 56 (2013), 1073-1086. | DOI | MR | JFM

[6] Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34 (1985), 777-799. | DOI | MR | JFM

[7] Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93 (1990), 34-170. | DOI | MR | JFM

[8] Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley Theory and the Study of Function Spaces. CBMS Regional Conference Series in Mathematics 79, American Mathematical Society, Providence (1991). | DOI | MR | JFM

[9] Grafakos, L., He, D.: Weak Hardy spaces. Some Topics in Harmonic Analysis and Applications Advanced Lectures in Mathematics 34, International Press, Higher Education Press, Beijing 177-202 J. Li et al. (2016). | MR | JFM

[10] He, D.: Square function characterization of weak Hardy spaces. J. Fourier Anal. Appl. 20 (2014), 1083-1110. | DOI | MR | JFM

[11] Kempka, H.: 2-microlocal Besov and Triebel-Lizorkin spaces of variable integrability. Rev. Mat. Complut. 22 (2009), 227-251. | DOI | MR | JFM

[12] Kempka, H.: Atomic, molecular and wavelet decomposition of 2-microlocal Besov and Triebel-Lizorkin spaces with variable integrability. Funct. Approximatio, Comment. Math. 43 (2010), 171-208. | DOI | MR | JFM

[13] Kyriazis, G.: Decomposition systems for function spaces. Stud. Math. 157 (2003), 133-169. | DOI | MR | JFM

[14] Peetre, J.: On spaces of Triebel-Lizorkin type. Ark. Mat. 13 (1975), 123-130. | DOI | MR | JFM

[15] Rychkov, V. S.: On a theorem of Bui, Paluszyński, and Taibleson. Proc. Steklov Inst. Math. 227 (1999), 280-292 translation from Tr. Mat. Inst. Steklova 227 1999 286-298. | MR | JFM

[16] Sawano, Y., Yang, D., Yuan, W.: New applications of Besov-type and Triebel-Lizorkin-type spaces. J. Math. Anal. Appl. 363 (2010), 73-85. | DOI | MR | JFM

[17] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series 32, Princeton University Press, Princeton (1971). | MR | JFM

[18] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78, Birkhäuser, Basel (1983). | DOI | MR | JFM

[19] Triebel, H.: Theory of Function Spaces II. Monographs in Mathematics 84, Birkhäuser, Basel (1992). | DOI | MR | JFM

[20] Triebel, H.: Fractals and Spectra: Related to Fourier Analysis and Function Spaces. Monographs in Mathematics 91, Birkhäuser, Basel (1997). | DOI | MR | JFM

[21] Triebel, H.: Theory of Function Spaces III. Monographs in Mathematics 100, Birkhäuser, Basel (2006). | DOI | MR | JFM

[22] Triebel, H.: Local Function Spaces, Heat and Navier-Stokes Equations. EMS Tracts in Mathematics 20, European Mathematical Society, Zürich (2013). | DOI | MR | JFM

[23] Triebel, H.: Hybrid Function Spaces, Heat and Navier-Stokes Equations. EMS Tracts in Mathematics 24, European Mathematical Society, Zürich (2015). | DOI | MR | JFM

[24] Triebel, H.: Tempered Homogeneous Function Spaces. EMS Series of Lectures in Mathematics, European Mathematical Society, Zürich (2015). | DOI | MR | JFM

[25] Ullrich, T.: Continuous characterizations of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits. J. Funct. Spaces Appl. 2012 (2012), Article ID 163213, 47 pages. | DOI | MR | JFM

[26] Xiao, J.: Holomorphic $Q$ Classes. Lecture Notes in Mathematics 1767, Springer, Berlin (2001). | DOI | MR | JFM

[27] Xiao, J.: Geometric $Q_p$ Functions. Frontiers in Mathematics, Birkhäuser, Basel (2006). | DOI | MR | JFM

[28] Xu, J.: Variable Besov and Triebel-Lizorkin spaces. Ann. Acad. Sci. Fenn., Math. 33 (2008), 511-522. | MR | JFM

[29] Yang, D., Yuan, W.: A new class of function spaces connecting Triebel-Lizorkin spaces and $Q$ spaces. J. Funct. Anal. 255 (2008), 2760-2809. | DOI | MR | JFM

[30] Yang, D., Yuan, W.: Characterizations of Besov-type and Triebel-Lizorkin-type spaces via maximal functions and local means. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 3805-3820. | DOI | MR | JFM

[31] Yang, D., Yuan, W.: New Besov-type spaces and Triebel-Lizorkin-type spaces including $Q$ spaces. Math. Z. 265 (2010), 451-480. | DOI | MR | JFM

[32] Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics 2005, Springer, Berlin (2010). | DOI | MR | JFM

Cité par Sources :