On the projective Finsler metrizability and the integrability of Rapcsák equation
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 469-495 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences determining the \hbox {2-acyclicity} of the symbol of the corresponding differential operator. Therefore the system is not integrable and higher order obstruction exists.
A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences determining the \hbox {2-acyclicity} of the symbol of the corresponding differential operator. Therefore the system is not integrable and higher order obstruction exists.
DOI : 10.21136/CMJ.2017.0010-16
Classification : 49N45, 53C22, 53C60, 58E30
Keywords: Euler-Lagrange equation; metrizability; projective metrizability; geodesics; spray; formal integrability
@article{10_21136_CMJ_2017_0010_16,
     author = {Milkovszki, Tam\'as and Muzsnay, Zolt\'an},
     title = {On the projective {Finsler} metrizability and the integrability of {Rapcs\'ak} equation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {469--495},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.2017.0010-16},
     mrnumber = {3661054},
     zbl = {06738532},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0010-16/}
}
TY  - JOUR
AU  - Milkovszki, Tamás
AU  - Muzsnay, Zoltán
TI  - On the projective Finsler metrizability and the integrability of Rapcsák equation
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 469
EP  - 495
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0010-16/
DO  - 10.21136/CMJ.2017.0010-16
LA  - en
ID  - 10_21136_CMJ_2017_0010_16
ER  - 
%0 Journal Article
%A Milkovszki, Tamás
%A Muzsnay, Zoltán
%T On the projective Finsler metrizability and the integrability of Rapcsák equation
%J Czechoslovak Mathematical Journal
%D 2017
%P 469-495
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0010-16/
%R 10.21136/CMJ.2017.0010-16
%G en
%F 10_21136_CMJ_2017_0010_16
Milkovszki, Tamás; Muzsnay, Zoltán. On the projective Finsler metrizability and the integrability of Rapcsák equation. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 469-495. doi: 10.21136/CMJ.2017.0010-16

[1] Bácsó, S., Szilasi, Z.: On the projective theory of sprays. Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 26 (2010), 171-207. | MR | JFM

[2] Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L., Griffiths, P. A.: Exterior Differential Systems. Mathematical Sciences Research Institute Publications 18, Springer, New York (1991). | DOI | MR | JFM

[3] Bucataru, I., Milkovszki, T., Muzsnay, Z.: Invariant metrizability and projective metrizability on Lie groups and homogeneous spaces. Mediterr. J. Math. (2016), 4567-4580. | DOI | MR | JFM

[4] Bucataru, I., Muzsnay, Z.: Projective metrizability and formal integrability. SIGMA, Symmetry Integrability Geom. Methods Appl. (electronic only) 7 (2011), Paper 114, 22 pages. | DOI | MR | JFM

[5] Bucataru, I., Muzsnay, Z.: Projective and Finsler metrizability: parameterization-rigidity of the geodesics. Int. J. Math. 23 (2012), 1250099, 15 pages. | DOI | MR | JFM

[6] Crampin, M.: Isotropic and R-flat sprays. Houston J. Math. 33 (2007), 451-459. | MR | JFM

[7] Crampin, M.: On the inverse problem for sprays. Publ. Math. 70 (2007), 319-335. | MR | JFM

[8] Crampin, M.: Some remarks on the Finslerian version of Hilbert's fourth problem. Houston J. Math. 37 (2011), 369-391. | MR | JFM

[9] Crampin, M., Mestdag, T., Saunders, D. J.: The multiplier approach to the projective Finsler metrizability problem. Differ. Geom. Appl. 30 (2012), 604-621. | DOI | MR | JFM

[10] Crampin, M., Mestdag, T., Saunders, D. J.: Hilbert forms for a Finsler metrizable projective class of sprays. Differ. Geom. Appl. 31 (2013), 63-79. | DOI | MR | JFM

[11] Do, T., Prince, G.: New progress in the inverse problem in the calculus of variations. Differ. Geom. Appl. 45 (2016), 148-179. | DOI | MR | JFM

[12] Frölicher, A., Nijenhuis, A.: Theory of vector-valued differential forms. I: Derivations in the graded ring of differential forms. Nederl. Akad. Wet., Proc., Ser. A. 59 (1956), 338-359. | MR | JFM

[13] Grifone, J., Muzsnay, Z.: Variational Principles for Second-Order Differential Equations. Application of the Spencer Theory to Characterize Variational Sprays. World Scientific Publishing, Singapore (2000). | DOI | MR | JFM

[14] Klein, J., Voutier, A.: Formes extérieures génératrices de sprays. Ann. Inst. Fourier 18 French (1968), 241-260. | DOI | MR | JFM

[15] Matveev, V. S.: On projective equivalence and pointwise projective relation of Randers metrics. Int. J. Math. 23 (2012), 1250093, 14 pages. | DOI | MR | JFM

[16] Mestdag, T.: Finsler geodesics of Lagrangian systems through Routh reduction. Mediterr. J. Math. 13 (2016), 825-839. | DOI | MR | JFM

[17] Muzsnay, Z.: The Euler-Lagrange PDE and Finsler metrizability. Houston J. Math. 32 (2006), 79-98. | MR | JFM

[18] Rapcsák, A.: Über die bahntreuen Abbildungen metrischer Räume. Publ. Math. German 8 (1961), 285-290. | MR | JFM

[19] Sarlet, W., Thompson, G., Prince, G. E.: The inverse problem of the calculus of variations: The use of geometrical calculus in Douglas's analysis. Trans. Am. Math. Soc. 354 (2002), 2897-2919. | DOI | MR | JFM

[20] Shen, Z.: Differential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers, Dordrecht (2001). | DOI | MR | JFM

[21] Szilasi, J., Lovas, R. L., Kertész, D. C.: Connections, Sprays and Finsler Structures. World Scientific Publishing, Hackensack (2014). | MR | JFM

[22] Szilasi, J., Vattamány, S.: On the Finsler-metrizabilities of spray manifolds. Period. Math. Hung. 44 (2002), 81-100. | DOI | MR | JFM

Cité par Sources :