Keywords: Euler-Lagrange equation; metrizability; projective metrizability; geodesics; spray; formal integrability
@article{10_21136_CMJ_2017_0010_16,
author = {Milkovszki, Tam\'as and Muzsnay, Zolt\'an},
title = {On the projective {Finsler} metrizability and the integrability of {Rapcs\'ak} equation},
journal = {Czechoslovak Mathematical Journal},
pages = {469--495},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0010-16},
mrnumber = {3661054},
zbl = {06738532},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0010-16/}
}
TY - JOUR AU - Milkovszki, Tamás AU - Muzsnay, Zoltán TI - On the projective Finsler metrizability and the integrability of Rapcsák equation JO - Czechoslovak Mathematical Journal PY - 2017 SP - 469 EP - 495 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0010-16/ DO - 10.21136/CMJ.2017.0010-16 LA - en ID - 10_21136_CMJ_2017_0010_16 ER -
%0 Journal Article %A Milkovszki, Tamás %A Muzsnay, Zoltán %T On the projective Finsler metrizability and the integrability of Rapcsák equation %J Czechoslovak Mathematical Journal %D 2017 %P 469-495 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0010-16/ %R 10.21136/CMJ.2017.0010-16 %G en %F 10_21136_CMJ_2017_0010_16
Milkovszki, Tamás; Muzsnay, Zoltán. On the projective Finsler metrizability and the integrability of Rapcsák equation. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 469-495. doi: 10.21136/CMJ.2017.0010-16
[1] Bácsó, S., Szilasi, Z.: On the projective theory of sprays. Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 26 (2010), 171-207. | MR | JFM
[2] Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L., Griffiths, P. A.: Exterior Differential Systems. Mathematical Sciences Research Institute Publications 18, Springer, New York (1991). | DOI | MR | JFM
[3] Bucataru, I., Milkovszki, T., Muzsnay, Z.: Invariant metrizability and projective metrizability on Lie groups and homogeneous spaces. Mediterr. J. Math. (2016), 4567-4580. | DOI | MR | JFM
[4] Bucataru, I., Muzsnay, Z.: Projective metrizability and formal integrability. SIGMA, Symmetry Integrability Geom. Methods Appl. (electronic only) 7 (2011), Paper 114, 22 pages. | DOI | MR | JFM
[5] Bucataru, I., Muzsnay, Z.: Projective and Finsler metrizability: parameterization-rigidity of the geodesics. Int. J. Math. 23 (2012), 1250099, 15 pages. | DOI | MR | JFM
[6] Crampin, M.: Isotropic and R-flat sprays. Houston J. Math. 33 (2007), 451-459. | MR | JFM
[7] Crampin, M.: On the inverse problem for sprays. Publ. Math. 70 (2007), 319-335. | MR | JFM
[8] Crampin, M.: Some remarks on the Finslerian version of Hilbert's fourth problem. Houston J. Math. 37 (2011), 369-391. | MR | JFM
[9] Crampin, M., Mestdag, T., Saunders, D. J.: The multiplier approach to the projective Finsler metrizability problem. Differ. Geom. Appl. 30 (2012), 604-621. | DOI | MR | JFM
[10] Crampin, M., Mestdag, T., Saunders, D. J.: Hilbert forms for a Finsler metrizable projective class of sprays. Differ. Geom. Appl. 31 (2013), 63-79. | DOI | MR | JFM
[11] Do, T., Prince, G.: New progress in the inverse problem in the calculus of variations. Differ. Geom. Appl. 45 (2016), 148-179. | DOI | MR | JFM
[12] Frölicher, A., Nijenhuis, A.: Theory of vector-valued differential forms. I: Derivations in the graded ring of differential forms. Nederl. Akad. Wet., Proc., Ser. A. 59 (1956), 338-359. | MR | JFM
[13] Grifone, J., Muzsnay, Z.: Variational Principles for Second-Order Differential Equations. Application of the Spencer Theory to Characterize Variational Sprays. World Scientific Publishing, Singapore (2000). | DOI | MR | JFM
[14] Klein, J., Voutier, A.: Formes extérieures génératrices de sprays. Ann. Inst. Fourier 18 French (1968), 241-260. | DOI | MR | JFM
[15] Matveev, V. S.: On projective equivalence and pointwise projective relation of Randers metrics. Int. J. Math. 23 (2012), 1250093, 14 pages. | DOI | MR | JFM
[16] Mestdag, T.: Finsler geodesics of Lagrangian systems through Routh reduction. Mediterr. J. Math. 13 (2016), 825-839. | DOI | MR | JFM
[17] Muzsnay, Z.: The Euler-Lagrange PDE and Finsler metrizability. Houston J. Math. 32 (2006), 79-98. | MR | JFM
[18] Rapcsák, A.: Über die bahntreuen Abbildungen metrischer Räume. Publ. Math. German 8 (1961), 285-290. | MR | JFM
[19] Sarlet, W., Thompson, G., Prince, G. E.: The inverse problem of the calculus of variations: The use of geometrical calculus in Douglas's analysis. Trans. Am. Math. Soc. 354 (2002), 2897-2919. | DOI | MR | JFM
[20] Shen, Z.: Differential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers, Dordrecht (2001). | DOI | MR | JFM
[21] Szilasi, J., Lovas, R. L., Kertész, D. C.: Connections, Sprays and Finsler Structures. World Scientific Publishing, Hackensack (2014). | MR | JFM
[22] Szilasi, J., Vattamány, S.: On the Finsler-metrizabilities of spray manifolds. Period. Math. Hung. 44 (2002), 81-100. | DOI | MR | JFM
Cité par Sources :