Copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 457-467
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the presence of copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}( C[0,1] ,X)$. By using Dvoretzky's theorem we deduce that if $X$ is an infinite-dimensional Banach space, then $\Pi _{2}( C[ 0,1] ,X) $ contains $\lambda \sqrt {2}$-uniformly copies of $l_{\infty }^{n}$'s and $\Pi _{1}( C[ 0,1] ,X) $ contains $\lambda $-uniformly copies of $l_{2}^{n}$'s for all $\lambda >1$. As an application, we show that if $X$ is an infinite-dimensional Banach space then the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}( C[ 0,1] ,X) $ are distinct, extending the well-known result that the spaces $\Pi _{2}( C[ 0,1],X) $ and $\mathcal {N}( C[ 0,1] ,X) $ are distinct.
We study the presence of copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}( C[0,1] ,X)$. By using Dvoretzky's theorem we deduce that if $X$ is an infinite-dimensional Banach space, then $\Pi _{2}( C[ 0,1] ,X) $ contains $\lambda \sqrt {2}$-uniformly copies of $l_{\infty }^{n}$'s and $\Pi _{1}( C[ 0,1] ,X) $ contains $\lambda $-uniformly copies of $l_{2}^{n}$'s for all $\lambda >1$. As an application, we show that if $X$ is an infinite-dimensional Banach space then the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}( C[ 0,1] ,X) $ are distinct, extending the well-known result that the spaces $\Pi _{2}( C[ 0,1],X) $ and $\mathcal {N}( C[ 0,1] ,X) $ are distinct.
DOI : 10.21136/CMJ.2017.0009-16
Classification : 46B07, 46B28, 47B10, 47L20
Keywords: $p$-summing linear operators; copies of $l_{p}^{n}$'s uniformly; local structure of a Banach space; multiplication operator; average
@article{10_21136_CMJ_2017_0009_16,
     author = {Popa, Dumitru},
     title = {Copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $},
     journal = {Czechoslovak Mathematical Journal},
     pages = {457--467},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.2017.0009-16},
     mrnumber = {3661053},
     zbl = {06738531},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0009-16/}
}
TY  - JOUR
AU  - Popa, Dumitru
TI  - Copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 457
EP  - 467
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0009-16/
DO  - 10.21136/CMJ.2017.0009-16
LA  - en
ID  - 10_21136_CMJ_2017_0009_16
ER  - 
%0 Journal Article
%A Popa, Dumitru
%T Copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $
%J Czechoslovak Mathematical Journal
%D 2017
%P 457-467
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0009-16/
%R 10.21136/CMJ.2017.0009-16
%G en
%F 10_21136_CMJ_2017_0009_16
Popa, Dumitru. Copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 457-467. doi: 10.21136/CMJ.2017.0009-16

[1] Costara, C., Popa, D.: Exercises in Functional Analysis. Kluwer Texts in the Mathematical Sciences 26, Kluwer Academic Publishers Group, Dordrecht (2003). | DOI | MR | JFM

[2] Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland Mathematics Studies 176, North-Holland Publishing, Amsterdam (1993). | DOI | MR | JFM

[3] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics 43, Cambridge University Press, Cambridge (1995). | DOI | MR | JFM

[4] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15, American Mathematical Society, Providence (1977). | DOI | MR | JFM

[5] Lima, Å., Lima, V., Oja, E.: Absolutely summing operators on $C[0,1]$ as a tree space and the bounded approximation property. J. Funct. Anal. 259 (2010), 2886-2901. | DOI | MR | JFM

[6] Pietsch, A.: Operator Ideals. Mathematische Monographien 16, VEB Deutscher der Wissenschaften, Berlin (1978). | MR | JFM

[7] Popa, D.: Examples of operators on $C[0,1]$ distinguishing certain operator ideals. Arch. Math. 88 (2007), 349-357. | DOI | MR | JFM

[8] Popa, D.: Khinchin's inequality, Dunford-Pettis and compact operators on the space $C([0,1],X)$. Proc. Indian Acad. Sci., Math. Sci. 117 (2007), 13-30. | DOI | MR | JFM

[9] Popa, D.: Averages and compact, absolutely summing and nuclear operators on $C(\Omega)$. J. Korean Math. Soc. 47 (2010), 899-924. | DOI | MR | JFM

[10] Sofi, M. A.: Factoring operators over Hilbert-Schmidt maps and vector measures. Indag. Math., New Ser. 20 (2009), 273-284. | DOI | MR | JFM

Cité par Sources :