Copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 457-467.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the presence of copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}( C[0,1] ,X)$. By using Dvoretzky's theorem we deduce that if $X$ is an infinite-dimensional Banach space, then $\Pi _{2}( C[ 0,1] ,X) $ contains $\lambda \sqrt {2}$-uniformly copies of $l_{\infty }^{n}$'s and $\Pi _{1}( C[ 0,1] ,X) $ contains $\lambda $-uniformly copies of $l_{2}^{n}$'s for all $\lambda >1$. As an application, we show that if $X$ is an infinite-dimensional Banach space then the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}( C[ 0,1] ,X) $ are distinct, extending the well-known result that the spaces $\Pi _{2}( C[ 0,1],X) $ and $\mathcal {N}( C[ 0,1] ,X) $ are distinct.
DOI : 10.21136/CMJ.2017.0009-16
Classification : 46B07, 46B28, 47B10, 47L20
Keywords: $p$-summing linear operators; copies of $l_{p}^{n}$'s uniformly; local structure of a Banach space; multiplication operator; average
@article{10_21136_CMJ_2017_0009_16,
     author = {Popa, Dumitru},
     title = {Copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $},
     journal = {Czechoslovak Mathematical Journal},
     pages = {457--467},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2017},
     doi = {10.21136/CMJ.2017.0009-16},
     mrnumber = {3661053},
     zbl = {06738531},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0009-16/}
}
TY  - JOUR
AU  - Popa, Dumitru
TI  - Copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 457
EP  - 467
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0009-16/
DO  - 10.21136/CMJ.2017.0009-16
LA  - en
ID  - 10_21136_CMJ_2017_0009_16
ER  - 
%0 Journal Article
%A Popa, Dumitru
%T Copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $
%J Czechoslovak Mathematical Journal
%D 2017
%P 457-467
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0009-16/
%R 10.21136/CMJ.2017.0009-16
%G en
%F 10_21136_CMJ_2017_0009_16
Popa, Dumitru. Copies of $l_{p}^{n}$'s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 457-467. doi : 10.21136/CMJ.2017.0009-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0009-16/

Cité par Sources :