Riemannian regular $\sigma$-manifolds
Czechoslovak Mathematical Journal, Tome 44 (1994) no. 1, pp. 57-66 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

DOI : 10.21136/CMJ.1994.128440
Classification : 53C30, 53C35
@article{10_21136_CMJ_1994_128440,
     author = {Ermolitski, A. A.},
     title = {Riemannian regular $\sigma$-manifolds},
     journal = {Czechoslovak Mathematical Journal},
     pages = {57--66},
     year = {1994},
     volume = {44},
     number = {1},
     doi = {10.21136/CMJ.1994.128440},
     mrnumber = {1257936},
     zbl = {0812.53046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1994.128440/}
}
TY  - JOUR
AU  - Ermolitski, A. A.
TI  - Riemannian regular $\sigma$-manifolds
JO  - Czechoslovak Mathematical Journal
PY  - 1994
SP  - 57
EP  - 66
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1994.128440/
DO  - 10.21136/CMJ.1994.128440
LA  - en
ID  - 10_21136_CMJ_1994_128440
ER  - 
%0 Journal Article
%A Ermolitski, A. A.
%T Riemannian regular $\sigma$-manifolds
%J Czechoslovak Mathematical Journal
%D 1994
%P 57-66
%V 44
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1994.128440/
%R 10.21136/CMJ.1994.128440
%G en
%F 10_21136_CMJ_1994_128440
Ermolitski, A. A. Riemannian regular $\sigma$-manifolds. Czechoslovak Mathematical Journal, Tome 44 (1994) no. 1, pp. 57-66. doi: 10.21136/CMJ.1994.128440

[1] C. Jeffries: $o$-deformable (1,1) tensor fields. J. Diff. Geom. 3–4 (1972), no. 8, 575–583. | MR

[2] S. Kobayshi, K. Nomizu: Foundations of Differential Geometry, vol 1. Wiley, New York, 1963.

[3] S. Kobayshi, K. Nomizu: Foundations of Differential Geometry, vol 2. Wiley, New York, 1969.

[4] O. Kowalski: Generalized Symmetric Spaces. Lecture Notes in Math. 805, Springer, 1980. | MR | Zbl

[5] O. Loos: Symmetric Spaces. Benjamin, New York-Amsterdam, 1969. | Zbl

[6] O. Loos: Spieglungsräume und homogene symmetrische Räume. Math. Z. 2 (1967), no. 99, 141–170. | DOI | MR

[7] R. Palais: A global formulation of the Lie theory of transformation groups. Mem. Amer. Math. Soc. vol 22, 1957. | MR | Zbl

[8] Sabinin L. V.: About geometry of subsymmetric spaces. Nauchn. Dokl. V. Shk. Phys. Mat., 1958. (Russian)

[9] I. Tamura: Topology of foliations. Editions Mir, Moscow, 1979. (Russian) | MR | Zbl

Cité par Sources :