@article{10_21136_CMJ_1994_128440,
author = {Ermolitski, A. A.},
title = {Riemannian regular $\sigma$-manifolds},
journal = {Czechoslovak Mathematical Journal},
pages = {57--66},
year = {1994},
volume = {44},
number = {1},
doi = {10.21136/CMJ.1994.128440},
mrnumber = {1257936},
zbl = {0812.53046},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1994.128440/}
}
Ermolitski, A. A. Riemannian regular $\sigma$-manifolds. Czechoslovak Mathematical Journal, Tome 44 (1994) no. 1, pp. 57-66. doi: 10.21136/CMJ.1994.128440
[1] C. Jeffries: $o$-deformable (1,1) tensor fields. J. Diff. Geom. 3–4 (1972), no. 8, 575–583. | MR
[2] S. Kobayshi, K. Nomizu: Foundations of Differential Geometry, vol 1. Wiley, New York, 1963.
[3] S. Kobayshi, K. Nomizu: Foundations of Differential Geometry, vol 2. Wiley, New York, 1969.
[4] O. Kowalski: Generalized Symmetric Spaces. Lecture Notes in Math. 805, Springer, 1980. | MR | Zbl
[5] O. Loos: Symmetric Spaces. Benjamin, New York-Amsterdam, 1969. | Zbl
[6] O. Loos: Spieglungsräume und homogene symmetrische Räume. Math. Z. 2 (1967), no. 99, 141–170. | DOI | MR
[7] R. Palais: A global formulation of the Lie theory of transformation groups. Mem. Amer. Math. Soc. vol 22, 1957. | MR | Zbl
[8] Sabinin L. V.: About geometry of subsymmetric spaces. Nauchn. Dokl. V. Shk. Phys. Mat., 1958. (Russian)
[9] I. Tamura: Topology of foliations. Editions Mir, Moscow, 1979. (Russian) | MR | Zbl
Cité par Sources :