On the convergence of Neumann series for noncompact operators
Czechoslovak Mathematical Journal, Tome 41 (1991) no. 2, pp. 312-316 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

DOI : 10.21136/CMJ.1991.102465
Classification : 45A05, 47A05, 47A10
@article{10_21136_CMJ_1991_102465,
     author = {Medkov\'a, Dagmar},
     title = {On the convergence of {Neumann} series for noncompact operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {312--316},
     year = {1991},
     volume = {41},
     number = {2},
     doi = {10.21136/CMJ.1991.102465},
     mrnumber = {1105448},
     zbl = {0754.47005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1991.102465/}
}
TY  - JOUR
AU  - Medková, Dagmar
TI  - On the convergence of Neumann series for noncompact operators
JO  - Czechoslovak Mathematical Journal
PY  - 1991
SP  - 312
EP  - 316
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1991.102465/
DO  - 10.21136/CMJ.1991.102465
LA  - en
ID  - 10_21136_CMJ_1991_102465
ER  - 
%0 Journal Article
%A Medková, Dagmar
%T On the convergence of Neumann series for noncompact operators
%J Czechoslovak Mathematical Journal
%D 1991
%P 312-316
%V 41
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1991.102465/
%R 10.21136/CMJ.1991.102465
%G en
%F 10_21136_CMJ_1991_102465
Medková, Dagmar. On the convergence of Neumann series for noncompact operators. Czechoslovak Mathematical Journal, Tome 41 (1991) no. 2, pp. 312-316. doi: 10.21136/CMJ.1991.102465

[AKK] T. S. Angell R. E. Kleinmann J. Král: Layer potentials on boundaries with corners and edges. Časopis pro pěst, mat. 113 (1988), No. 4, 387-402. | MR

[DSch] N. Dunford J. T. Schwarz: Linear Operators. New York, Intenscience 1963.

[H] P. R. Halmos: Finite-dimensional Vector spaces. Princeton-Toronto-London-New York, D. van Nostrand, 1963. | MR | Zbl

[K1] J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823, Springer-Verlag, Berlin 1980. | MR

[K2] J. Král: The Fredholm radius of an operator in potential theory. Czechoslovak Math. J. 15 (90), 1965, 454-473, 565-588. | MR

[KW] J. Král W. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory. Aplikace Matematiky 31 (1986), 293-308. | MR

[R] J. Radon: Über Randwertaufgaben beim logarithmischen Potential. Gesammelte Abhandlungen, Verlag der Österreichischen Akad. der Wiss. 1987.

[Sch] M. Schechter: Principles of functional analysis. Academic Press, New York and London 1971. | MR | Zbl

[S] N. Suzuki: On the Convergence of Neumann Series in Banach Space. Math. Ann. 220 (1976), 143-146. | DOI | MR | Zbl

[T] A. E. Taylor: Úvod do funkcionální analýzy. Academia. Praha 1973.

Cité par Sources :