On the properties of the Aumann integral with applications to differential inclusions and control systems
Czechoslovak Mathematical Journal, Tome 39 (1989) no. 1, pp. 1-15 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

DOI : 10.21136/CMJ.1989.102274
Classification : 28B20, 49A27, 49E10
@article{10_21136_CMJ_1989_102274,
     author = {Kandilakis, Dimitrios A. and Papageorgiou, Nikolaos S.},
     title = {On the properties of the {Aumann} integral with applications to differential inclusions and control systems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--15},
     year = {1989},
     volume = {39},
     number = {1},
     doi = {10.21136/CMJ.1989.102274},
     mrnumber = {983479},
     zbl = {0677.28005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1989.102274/}
}
TY  - JOUR
AU  - Kandilakis, Dimitrios A.
AU  - Papageorgiou, Nikolaos S.
TI  - On the properties of the Aumann integral with applications to differential inclusions and control systems
JO  - Czechoslovak Mathematical Journal
PY  - 1989
SP  - 1
EP  - 15
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1989.102274/
DO  - 10.21136/CMJ.1989.102274
LA  - en
ID  - 10_21136_CMJ_1989_102274
ER  - 
%0 Journal Article
%A Kandilakis, Dimitrios A.
%A Papageorgiou, Nikolaos S.
%T On the properties of the Aumann integral with applications to differential inclusions and control systems
%J Czechoslovak Mathematical Journal
%D 1989
%P 1-15
%V 39
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1989.102274/
%R 10.21136/CMJ.1989.102274
%G en
%F 10_21136_CMJ_1989_102274
Kandilakis, Dimitrios A.; Papageorgiou, Nikolaos S. On the properties of the Aumann integral with applications to differential inclusions and control systems. Czechoslovak Mathematical Journal, Tome 39 (1989) no. 1, pp. 1-15. doi: 10.21136/CMJ.1989.102274

[1] Z. Artstein: Discrete and continuous bang-bang and facial spaces. Or: look for extreme points. S.I.A.M. Rev. 22 (1980) pp. 172-185. | MR

[2] Z. Artstein J. Burns: Integration of compact set valued functions. Pacific J. Math. 58 (1975) pp.297-307. | MR

[3] R. Aumann: Integrals of set valued function. J. Math. Anal. Appl. 12 (1965) pp. 1-12. | DOI | MR

[4] M. Benamara: Sections measurables extrémales d'une multiapplication. C.R. Acad. Sc. Paris t. 278 (1974) pp. 1249-1252. | MR

[5] M. Benamara: Points extremaux, multiapplications et fonctionelles integrales. Thése de $3^{eme}$ cycle, Université de Grenoble (1975).

[6] V. Blagodatskikh: Convexity of attainability spheres. Diff. Eq. 8 (1972) pp. 1661-1665.

[7] C. Castaing M. Valadier: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math. Vol. 580, Springer, Berlin (1977). | DOI | MR

[8] A. Cellina: On the differential inclusion $x \in [-1, 1]$. Rend. Acad. Naz. Lincei 69 (1980) pp. 1-6. | MR

[9] L. Cesari: Convexity of the range of certain integrals. S.T.A.M. J. Contr. Optim. 13 (1975) pp. 666-676. | DOI | MR | Zbl

[10] F. Clarke: Optimization and Nonsmooth Analysis. Wiley, New York (1983). | MR | Zbl

[11] E. Cramer V. Laksmikantham A. Mitchell: On the existence of weak solutions of differential equations in nonreflexive Banach spaces. Nonl. Anal. T.M.A. 2 (1978) pp. 169- 177. | DOI | MR

[12] R. Datko: A general bang-bang principle and bang-bang approximations. J. Math. Anal. Appl. 10 (1965) pp. 284-194. | DOI | MR | Zbl

[13] R. Datko: On the integration of set valued mappings in Banach spaces. Fund. Math. 78 (1973) pp. 205-208. | DOI | MR

[14] J. L. Davy: Properties of the solution set of a generalized differential equation. Bull. Austr. Math. Soc. 6 (1972) pp. 379-298. | DOI | MR | Zbl

[15] F. DeBlasi G. Pianigiani: A Baire category approach to the existence of solutions of multivalued differential equations in Banach spaces. Funkc. Ekvac. 25 (1985) pp. 153-162. | MR

[16] F. DeBlasi G. Pianigiani: Remark on Hausdorff continuous multifunctions and selections. Comm. Math. Univ. Carolinae 24 (1983) pp. 553-562. | MR

[17] G. Debreu: Integration of correspondences. Proc. of 5th Berkeley Symp. Math. Stat. and Probability I, Univ. of Calif. Press, Berkeley (1967) pp. 351-372. | MR | Zbl

[18] J. Diestel J. Uhl: Vector Measures. Math. Surveys, Vol. 15, A.M.S., Providence (1977). | MR

[19] J. Dugundji: Topology. Allyn and Bacon Inc., Boston (1966). | MR | Zbl

[20] F. Hiai H. Umegaki: Integrals, conditional expectations and martingales of multivalued functions. J. Multiv. Anal. 7 (1977) pp. 149-182. | DOI | MR

[21] C. Himmelberg: Measurable relations. Fund. Math. 87 (1975) pp. 53 - 72. | DOI | MR | Zbl

[22] K. Grasse: Some remarks on extremal solutions of multivalued differential equations. J. Optim. The. Appl. 40 (1983) pp. 221-35. | DOI | MR | Zbl

[23] J. Jarník J. Kurzweil: Integral of multivalued mappings and its connection with differential relations. Časopis pro pěstování matematiky 108 (1983) pp. 8-28. | MR

[24] N. Kikuchi: On some fundamental theorems of contigent equations in connection with control problems. Publ. R.I.M.S. Kyoto Univ 3 (1966), pp. 177-201. | DOI | MR

[25] I. Kluvánek G. Knowles: Vector Measures and Control Systems. Math. Studies, Vol. 20, North Holland, Amsterdam (1975). | MR

[26] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7 (82) (1957), pp. 418-449. | MR | Zbl

[27] J. Kurzweil: Generalized ordinary differential equations. Czechoslovak Math. J. 8 (83) (1958), pp. 360-388. | MR | Zbl

[28] N. S. Papageorgiou: On the theory of Banach space valued multifunctions. Part 1 : Integration and conditional expectation. J. Multiv. Anal. 17 (1985), pp. 185-207. | DOI

[29] N. S. Papageorgiou: Representation of set valued operators. Trans. Amer. Math. Soc. 292 (1985), pp. 557-572. | DOI | MR | Zbl

[30] N. S. Papageorgiou: Integral functionals on Souslin locally convex spaces. J. Math. Anal. Appl. 113 (1986), pp. 148-163. | DOI | MR | Zbl

[31] N. S. Papageorgiou: Random differential inclusions in Banach spaces. J. Diff. Eq. 65 (1986), pp.287-303. | DOI | MR | Zbl

[32] R. T. Rockafellar: Integral functionals, normal integrands and measurable selections. Lecture Notes in Math. Vol. 543, Springer, Berlin (1976), pp. 157-207. | DOI | MR | Zbl

[33] G. Stefani P. Zecca: Multivalued differential equations on manifolds with applications to control theory. Illinois J. Math. 24 (1980), pp. 560-575. | DOI | MR

[34] H. Tanabe: Equations of Evolution. Pitman, London (1979). | MR | Zbl

[35] D. Wagner: Survey of measurable selection theorems. S.I.A.M. J. Conti. Optim. 15 (1977), pp. 859-903. | DOI | MR | Zbl

Cité par Sources :