@article{10_21136_CMJ_1988_102234,
author = {Spi\v{s}iak, Ladislav and Vojt\'a\v{s}, Peter},
title = {Dependences between definitions of finiteness},
journal = {Czechoslovak Mathematical Journal},
pages = {389--397},
year = {1988},
volume = {38},
number = {3},
doi = {10.21136/CMJ.1988.102234},
mrnumber = {950292},
zbl = {0667.03040},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1988.102234/}
}
TY - JOUR AU - Spišiak, Ladislav AU - Vojtáš, Peter TI - Dependences between definitions of finiteness JO - Czechoslovak Mathematical Journal PY - 1988 SP - 389 EP - 397 VL - 38 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1988.102234/ DO - 10.21136/CMJ.1988.102234 LA - en ID - 10_21136_CMJ_1988_102234 ER -
Spišiak, Ladislav; Vojtáš, Peter. Dependences between definitions of finiteness. Czechoslovak Mathematical Journal, Tome 38 (1988) no. 3, pp. 389-397. doi: 10.21136/CMJ.1988.102234
[1] A. Blass: Existence of bases implies the axiom of choice. In J. E. Baumgartner, D. A. Martin, S. Shelah editors. Axiom. Set Theory. Contemporary Mathematics 31 (1984) 31 - 33. | DOI | MR | Zbl
[2] J. D. Halpern P. E. Howard: Cardinals m such that 2m = m. Proc. Amer. Math. Soc. 26 (1970) 487-490. | MR
[3] J. D. Halpern P. E. Howard: Cardinal addition and the Axiom of Choice. Bull. Amer. Math. Soc. 80 (1974) 584-586. | DOI | MR
[4] T. Jech: Eine Bemerkung zum Auswahlaxiom. Časopis Pěst. Mat. 93 (1968), 30-31. | MR | Zbl
[5] T. Jech: The Axiom of Choice. Studies in Logic and the Foundation of Mathematics 75, North Holland, Amsterdam 1973. | MR | Zbl
[6] T. Jech A. Sochor: Applications of the $\Theta$-model. Bull. Acad. Polon. Sci. 16 (1966) 351-355. | MR
[7] A. Levy: The independence of various definitions of finiteness. Fund. Math. XLVI (1958) 1-13. | MR | Zbl
[8] A. Levy: Basic Set Theory. $\Omega$ Perspectives in Mathematical Logic. Springer-Verlag 1979. | MR
[9] A. R. D. Mathias: Surrealistic landscape with figures (a survey of recent results in set theory). Periodica Math. Hungarica 10 (1979) 109-175. | DOI | MR
[10] G. Sageev: An independence result concerning the Axiom of Choice. Ann. Math. Logic 8(1975) 1-184. | DOI | MR | Zbl
[11] G. Sageev: A model of ZF in which the Dedekind cardinals constitute a natural nonstandard model of Arithmetic. To appear.
[12] W. Sierpinski: Cardinal and ordinal numbers. PWN, Warszawa 1958. | MR | Zbl
[13] L. Spišiak: Definitions of finiteness. To appear.
[14] A. Tarski: Sur quelques théorèmes qui équivalent a l'axiome du choix. Fund. Math. 5 (1924) 147-154. | DOI
[15] A. Tarski: Sur les ensembles finis. Fund. Math. 6 (1924) 45-95. | DOI
[16] J. Truss: Classes of Dedekind finite cardinals. Fund. Math. To appear. | MR | Zbl
Cité par Sources :