Dependences between definitions of finiteness
Czechoslovak Mathematical Journal, Tome 38 (1988) no. 3, pp. 389-397 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

DOI : 10.21136/CMJ.1988.102234
Classification : 03E25, 03E30
@article{10_21136_CMJ_1988_102234,
     author = {Spi\v{s}iak, Ladislav and Vojt\'a\v{s}, Peter},
     title = {Dependences between definitions of finiteness},
     journal = {Czechoslovak Mathematical Journal},
     pages = {389--397},
     year = {1988},
     volume = {38},
     number = {3},
     doi = {10.21136/CMJ.1988.102234},
     mrnumber = {950292},
     zbl = {0667.03040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1988.102234/}
}
TY  - JOUR
AU  - Spišiak, Ladislav
AU  - Vojtáš, Peter
TI  - Dependences between definitions of finiteness
JO  - Czechoslovak Mathematical Journal
PY  - 1988
SP  - 389
EP  - 397
VL  - 38
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1988.102234/
DO  - 10.21136/CMJ.1988.102234
LA  - en
ID  - 10_21136_CMJ_1988_102234
ER  - 
%0 Journal Article
%A Spišiak, Ladislav
%A Vojtáš, Peter
%T Dependences between definitions of finiteness
%J Czechoslovak Mathematical Journal
%D 1988
%P 389-397
%V 38
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1988.102234/
%R 10.21136/CMJ.1988.102234
%G en
%F 10_21136_CMJ_1988_102234
Spišiak, Ladislav; Vojtáš, Peter. Dependences between definitions of finiteness. Czechoslovak Mathematical Journal, Tome 38 (1988) no. 3, pp. 389-397. doi: 10.21136/CMJ.1988.102234

[1] A. Blass: Existence of bases implies the axiom of choice. In J. E. Baumgartner, D. A. Martin, S. Shelah editors. Axiom. Set Theory. Contemporary Mathematics 31 (1984) 31 - 33. | DOI | MR | Zbl

[2] J. D. Halpern P. E. Howard: Cardinals m such that 2m = m. Proc. Amer. Math. Soc. 26 (1970) 487-490. | MR

[3] J. D. Halpern P. E. Howard: Cardinal addition and the Axiom of Choice. Bull. Amer. Math. Soc. 80 (1974) 584-586. | DOI | MR

[4] T. Jech: Eine Bemerkung zum Auswahlaxiom. Časopis Pěst. Mat. 93 (1968), 30-31. | MR | Zbl

[5] T. Jech: The Axiom of Choice. Studies in Logic and the Foundation of Mathematics 75, North Holland, Amsterdam 1973. | MR | Zbl

[6] T. Jech A. Sochor: Applications of the $\Theta$-model. Bull. Acad. Polon. Sci. 16 (1966) 351-355. | MR

[7] A. Levy: The independence of various definitions of finiteness. Fund. Math. XLVI (1958) 1-13. | MR | Zbl

[8] A. Levy: Basic Set Theory. $\Omega$ Perspectives in Mathematical Logic. Springer-Verlag 1979. | MR

[9] A. R. D. Mathias: Surrealistic landscape with figures (a survey of recent results in set theory). Periodica Math. Hungarica 10 (1979) 109-175. | DOI | MR

[10] G. Sageev: An independence result concerning the Axiom of Choice. Ann. Math. Logic 8(1975) 1-184. | DOI | MR | Zbl

[11] G. Sageev: A model of ZF in which the Dedekind cardinals constitute a natural nonstandard model of Arithmetic. To appear.

[12] W. Sierpinski: Cardinal and ordinal numbers. PWN, Warszawa 1958. | MR | Zbl

[13] L. Spišiak: Definitions of finiteness. To appear.

[14] A. Tarski: Sur quelques théorèmes qui équivalent a l'axiome du choix. Fund. Math. 5 (1924) 147-154. | DOI

[15] A. Tarski: Sur les ensembles finis. Fund. Math. 6 (1924) 45-95. | DOI

[16] J. Truss: Classes of Dedekind finite cardinals. Fund. Math. To appear. | MR | Zbl

Cité par Sources :