@article{10_21136_CMJ_1977_101473,
author = {Frunz\u{a}, \c{S}tefan},
title = {A characterization for the spectral capacity of a finite system of operators},
journal = {Czechoslovak Mathematical Journal},
pages = {356--362},
year = {1977},
volume = {27},
number = {3},
doi = {10.21136/CMJ.1977.101473},
mrnumber = {0440386},
zbl = {0389.47017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1977.101473/}
}
TY - JOUR AU - Frunză, Ştefan TI - A characterization for the spectral capacity of a finite system of operators JO - Czechoslovak Mathematical Journal PY - 1977 SP - 356 EP - 362 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1977.101473/ DO - 10.21136/CMJ.1977.101473 LA - en ID - 10_21136_CMJ_1977_101473 ER -
%0 Journal Article %A Frunză, Ştefan %T A characterization for the spectral capacity of a finite system of operators %J Czechoslovak Mathematical Journal %D 1977 %P 356-362 %V 27 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1977.101473/ %R 10.21136/CMJ.1977.101473 %G en %F 10_21136_CMJ_1977_101473
Frunză, Ştefan. A characterization for the spectral capacity of a finite system of operators. Czechoslovak Mathematical Journal, Tome 27 (1977) no. 3, pp. 356-362. doi: 10.21136/CMJ.1977.101473
[1] E. J. Albrecht: Funktionalkalküle in mehreren Veränderlichen. Dissertation zur Erlangung des Doktorgrades, Johannes Gutenberg-Universität zu Mainz, 1972.
[2] E. J. Albrecht: An example of a non-regular generalized scalar operator. Rev. Roum. Math. Pures et Appl. 18 (1973), 983-985. | MR | Zbl
[3] C. Apostol: Spectral decompositions and functional calculus. Rev. Roum. Math. Pures et Appl. 13 (1968), 1483-1530. | MR | Zbl
[4] E. Bishop: A duality theorem for an arbitrary operator. Рас. J. Math. 9 (1959), 379-397. | MR | Zbl
[5] I. Colojoară, C. Foiaş: Theory of generalized spectral operators. Gordon and Breach New York 1968. | MR
[6] С. Foiaş: Spectral capacities and decomposable operators. Rev. Roum. Math. Pures et Appl. 13 (1968), 1539-1545. | MR
[7] С. Foiaş: On the maximal spectral spaces of a decomposable operator. Rev. Roum. Math. Pures et Appl. 16 (1970), 1599-1606. | MR
[8] Şt. Frunză: Une caractérisation des espaces maximaux spectraux des opérateurs $u$-scalaires. Rev. Roum. Math. Pures et Appl. 16 (1970), 1607-1609. | MR
[9] Şt. Frunză: The Taylor spectrum and spectral decompositions. to appear in J. Functional Anal. | MR
[10] J. L. Taylor: A joint spectrum for several commuting operators. J. Functional Anal. 6 (1970), 172-191. | DOI | MR | Zbl
[11] J. L. Taylor: The analytic functional calculus for several commuting operators. Acta Math. 125 (1970), 1-38. | DOI | MR | Zbl
[12] F. H. Vasilescu: An application of Taylor's functional calculus. Rev. Roum. Math. Pures et Appl. 19 (1974), 1165-1167. | MR | Zbl
Cité par Sources :