A characterization for the spectral capacity of a finite system of operators
Czechoslovak Mathematical Journal, Tome 27 (1977) no. 3, pp. 356-362 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

DOI : 10.21136/CMJ.1977.101473
Classification : 47A10, 47A60
@article{10_21136_CMJ_1977_101473,
     author = {Frunz\u{a}, \c{S}tefan},
     title = {A characterization for the spectral capacity of a finite system of operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {356--362},
     year = {1977},
     volume = {27},
     number = {3},
     doi = {10.21136/CMJ.1977.101473},
     mrnumber = {0440386},
     zbl = {0389.47017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1977.101473/}
}
TY  - JOUR
AU  - Frunză, Ştefan
TI  - A characterization for the spectral capacity of a finite system of operators
JO  - Czechoslovak Mathematical Journal
PY  - 1977
SP  - 356
EP  - 362
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1977.101473/
DO  - 10.21136/CMJ.1977.101473
LA  - en
ID  - 10_21136_CMJ_1977_101473
ER  - 
%0 Journal Article
%A Frunză, Ştefan
%T A characterization for the spectral capacity of a finite system of operators
%J Czechoslovak Mathematical Journal
%D 1977
%P 356-362
%V 27
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1977.101473/
%R 10.21136/CMJ.1977.101473
%G en
%F 10_21136_CMJ_1977_101473
Frunză, Ştefan. A characterization for the spectral capacity of a finite system of operators. Czechoslovak Mathematical Journal, Tome 27 (1977) no. 3, pp. 356-362. doi: 10.21136/CMJ.1977.101473

[1] E. J. Albrecht: Funktionalkalküle in mehreren Veränderlichen. Dissertation zur Erlangung des Doktorgrades, Johannes Gutenberg-Universität zu Mainz, 1972.

[2] E. J. Albrecht: An example of a non-regular generalized scalar operator. Rev. Roum. Math. Pures et Appl. 18 (1973), 983-985. | MR | Zbl

[3] C. Apostol: Spectral decompositions and functional calculus. Rev. Roum. Math. Pures et Appl. 13 (1968), 1483-1530. | MR | Zbl

[4] E. Bishop: A duality theorem for an arbitrary operator. Рас. J. Math. 9 (1959), 379-397. | MR | Zbl

[5] I. Colojoară, C. Foiaş: Theory of generalized spectral operators. Gordon and Breach New York 1968. | MR

[6] С. Foiaş: Spectral capacities and decomposable operators. Rev. Roum. Math. Pures et Appl. 13 (1968), 1539-1545. | MR

[7] С. Foiaş: On the maximal spectral spaces of a decomposable operator. Rev. Roum. Math. Pures et Appl. 16 (1970), 1599-1606. | MR

[8] Şt. Frunză: Une caractérisation des espaces maximaux spectraux des opérateurs $u$-scalaires. Rev. Roum. Math. Pures et Appl. 16 (1970), 1607-1609. | MR

[9] Şt. Frunză: The Taylor spectrum and spectral decompositions. to appear in J. Functional Anal. | MR

[10] J. L. Taylor: A joint spectrum for several commuting operators. J. Functional Anal. 6 (1970), 172-191. | DOI | MR | Zbl

[11] J. L. Taylor: The analytic functional calculus for several commuting operators. Acta Math. 125 (1970), 1-38. | DOI | MR | Zbl

[12] F. H. Vasilescu: An application of Taylor's functional calculus. Rev. Roum. Math. Pures et Appl. 19 (1974), 1165-1167. | MR | Zbl

Cité par Sources :