On minimizing the sum of squares of $\Cal L^2$ norms of differential operators under constraints
Czechoslovak Mathematical Journal, Tome 27 (1977) no. 1, pp. 132-143 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

DOI : 10.21136/CMJ.1977.101451
Classification : 34B25
@article{10_21136_CMJ_1977_101451,
     author = {Brown, Richard C. and Krall, Allan M.},
     title = {On minimizing the sum of squares of $\Cal L^2$ norms of differential operators under constraints},
     journal = {Czechoslovak Mathematical Journal},
     pages = {132--143},
     year = {1977},
     volume = {27},
     number = {1},
     doi = {10.21136/CMJ.1977.101451},
     mrnumber = {0430395},
     zbl = {0369.34007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1977.101451/}
}
TY  - JOUR
AU  - Brown, Richard C.
AU  - Krall, Allan M.
TI  - On minimizing the sum of squares of $\Cal L^2$ norms of differential operators under constraints
JO  - Czechoslovak Mathematical Journal
PY  - 1977
SP  - 132
EP  - 143
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1977.101451/
DO  - 10.21136/CMJ.1977.101451
LA  - en
ID  - 10_21136_CMJ_1977_101451
ER  - 
%0 Journal Article
%A Brown, Richard C.
%A Krall, Allan M.
%T On minimizing the sum of squares of $\Cal L^2$ norms of differential operators under constraints
%J Czechoslovak Mathematical Journal
%D 1977
%P 132-143
%V 27
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1977.101451/
%R 10.21136/CMJ.1977.101451
%G en
%F 10_21136_CMJ_1977_101451
Brown, Richard C.; Krall, Allan M. On minimizing the sum of squares of $\Cal L^2$ norms of differential operators under constraints. Czechoslovak Mathematical Journal, Tome 27 (1977) no. 1, pp. 132-143. doi: 10.21136/CMJ.1977.101451

[1] L. D. Berkovitz, H. Pollard: A nonclassical variational problem arising from an optimal filter problem II. Arch. Ratl. Mech. Anal. 38 (1970), 161-172. | DOI | MR

[2] R. С. Brown: Duality theory for $n$-th order differential operators under Stieltjes boundary conditions. S.I.A.M. J. Math. Anal., to appear. | MR | Zbl

[3] R. C. Brown: Duality theory for $n$-th order differential operators under Stieltjes boundary conditions, II: Nonsmooth coefficients and nonsingular measures. Ann. Mat. Рurа. Appl., to appear. | MR | Zbl

[4] R. C. Brown: Adjoint domains and generalized splines. Czech. Math. J., 25 (1975), 134-147. | MR | Zbl

[5] N. Dunford, J. T. Schwartz: Linear operators. Part 1, Interscience, New York, 1975.

[6] S. Goldberg: Unbounded linear operators. McGraw-Hill, New York, 1966. | MR | Zbl

[7] M. Golomb, J. Jerome: Linear ordinary differential equations with boundary conditions on arbitrary point sets. Trans. Amer. Math. Soc., 153 (1971), 235 - 264. | DOI | MR | Zbl

[8] A. M. Krall, R. С Brown: $n$-th order differential systems under Stieltjes boundary conditions. MRC Tech. Summ. Rept. #1581.

[9] D. G. Lunberger: Optimization by vector space methods. John Wiley, New York, 1969. | MR

[10] L. Schumaker: Spline functions: Theory and applications. in press.

Cité par Sources :