A balanced finite-element method for an axisymmetrically loaded thin shell
Applications of Mathematics, Tome 69 (2024) no. 2, pp. 151-168
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We analyse a finite-element discretisation of a differential equation describing an axisymmetrically loaded thin shell. The problem is singularly perturbed when the thickness of the shell becomes small. We prove robust convergence of the method in a balanced norm that captures the layers present in the solution. Numerical results confirm our findings.
We analyse a finite-element discretisation of a differential equation describing an axisymmetrically loaded thin shell. The problem is singularly perturbed when the thickness of the shell becomes small. We prove robust convergence of the method in a balanced norm that captures the layers present in the solution. Numerical results confirm our findings.
DOI :
10.21136/AM.2024.0134-23
Classification :
65N30, 74K25, 74S05
Keywords: axisymmetrically loaded thin shell; singular perturbation; balanced norm; layer-adapted meshes; finite element method
Keywords: axisymmetrically loaded thin shell; singular perturbation; balanced norm; layer-adapted meshes; finite element method
@article{10_21136_AM_2024_0134_23,
author = {Heuer, Norbert and Linss, Torsten},
title = {A balanced finite-element method for an axisymmetrically loaded thin shell},
journal = {Applications of Mathematics},
pages = {151--168},
year = {2024},
volume = {69},
number = {2},
doi = {10.21136/AM.2024.0134-23},
mrnumber = {4728189},
zbl = {07893329},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0134-23/}
}
TY - JOUR AU - Heuer, Norbert AU - Linss, Torsten TI - A balanced finite-element method for an axisymmetrically loaded thin shell JO - Applications of Mathematics PY - 2024 SP - 151 EP - 168 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0134-23/ DO - 10.21136/AM.2024.0134-23 LA - en ID - 10_21136_AM_2024_0134_23 ER -
%0 Journal Article %A Heuer, Norbert %A Linss, Torsten %T A balanced finite-element method for an axisymmetrically loaded thin shell %J Applications of Mathematics %D 2024 %P 151-168 %V 69 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0134-23/ %R 10.21136/AM.2024.0134-23 %G en %F 10_21136_AM_2024_0134_23
Heuer, Norbert; Linss, Torsten. A balanced finite-element method for an axisymmetrically loaded thin shell. Applications of Mathematics, Tome 69 (2024) no. 2, pp. 151-168. doi: 10.21136/AM.2024.0134-23
Cité par Sources :