A balanced finite-element method for an axisymmetrically loaded thin shell
Applications of Mathematics, Tome 69 (2024) no. 2, pp. 151-168.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We analyse a finite-element discretisation of a differential equation describing an axisymmetrically loaded thin shell. The problem is singularly perturbed when the thickness of the shell becomes small. We prove robust convergence of the method in a balanced norm that captures the layers present in the solution. Numerical results confirm our findings.
DOI : 10.21136/AM.2024.0134-23
Classification : 65N30, 74K25, 74S05
Keywords: axisymmetrically loaded thin shell; singular perturbation; balanced norm; layer-adapted meshes; finite element method
@article{10_21136_AM_2024_0134_23,
     author = {Heuer, Norbert and Linss, Torsten},
     title = {A balanced finite-element method for an axisymmetrically loaded thin shell},
     journal = {Applications of Mathematics},
     pages = {151--168},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2024},
     doi = {10.21136/AM.2024.0134-23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0134-23/}
}
TY  - JOUR
AU  - Heuer, Norbert
AU  - Linss, Torsten
TI  - A balanced finite-element method for an axisymmetrically loaded thin shell
JO  - Applications of Mathematics
PY  - 2024
SP  - 151
EP  - 168
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0134-23/
DO  - 10.21136/AM.2024.0134-23
LA  - en
ID  - 10_21136_AM_2024_0134_23
ER  - 
%0 Journal Article
%A Heuer, Norbert
%A Linss, Torsten
%T A balanced finite-element method for an axisymmetrically loaded thin shell
%J Applications of Mathematics
%D 2024
%P 151-168
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0134-23/
%R 10.21136/AM.2024.0134-23
%G en
%F 10_21136_AM_2024_0134_23
Heuer, Norbert; Linss, Torsten. A balanced finite-element method for an axisymmetrically loaded thin shell. Applications of Mathematics, Tome 69 (2024) no. 2, pp. 151-168. doi : 10.21136/AM.2024.0134-23. http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0134-23/

Cité par Sources :