Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces
Applications of Mathematics, Tome 69 (2024) no. 6, pp. 757-767 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We construct a new initial data to prove the ill-posedness of both Navier-Stokes and Euler equations in weaker Besov spaces in the sense that the solution maps to these equations starting from $u_0$ are discontinuous at $t = 0$.
We construct a new initial data to prove the ill-posedness of both Navier-Stokes and Euler equations in weaker Besov spaces in the sense that the solution maps to these equations starting from $u_0$ are discontinuous at $t = 0$.
DOI : 10.21136/AM.2024.0089-24
Classification : 35Q30, 35Q31, 47J06
Keywords: Navier-Stokes equation; Euler equation; ill-posedness; Besov space
@article{10_21136_AM_2024_0089_24,
     author = {Yu, Yanghai and Liu, Fang},
     title = {Ill-posedness for the {Navier-Stokes} and {Euler} equations in {Besov} spaces},
     journal = {Applications of Mathematics},
     pages = {757--767},
     year = {2024},
     volume = {69},
     number = {6},
     doi = {10.21136/AM.2024.0089-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0089-24/}
}
TY  - JOUR
AU  - Yu, Yanghai
AU  - Liu, Fang
TI  - Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces
JO  - Applications of Mathematics
PY  - 2024
SP  - 757
EP  - 767
VL  - 69
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0089-24/
DO  - 10.21136/AM.2024.0089-24
LA  - en
ID  - 10_21136_AM_2024_0089_24
ER  - 
%0 Journal Article
%A Yu, Yanghai
%A Liu, Fang
%T Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces
%J Applications of Mathematics
%D 2024
%P 757-767
%V 69
%N 6
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0089-24/
%R 10.21136/AM.2024.0089-24
%G en
%F 10_21136_AM_2024_0089_24
Yu, Yanghai; Liu, Fang. Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces. Applications of Mathematics, Tome 69 (2024) no. 6, pp. 757-767. doi: 10.21136/AM.2024.0089-24

Cité par Sources :