Exponential expressivity of ${\rm ReLU}^k$ neural networks on Gevrey classes with point singularities
Applications of Mathematics, Tome 69 (2024) no. 5, pp. 695-724
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains ${\rm D} \subset \mathbb R^d$, $d=2,3$. We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in ${\rm D}$, comprising the countably-normed spaces of I. M. Babuška and B. Q. Guo. \endgraf As intermediate result, we prove that continuous, piecewise polynomial high order (``$p$-version'') finite elements with elementwise polynomial degree $p\in \mathbb{N} $ on arbitrary, regular, simplicial partitions of polyhedral domains ${\rm D} \subset \mathbb R^d$, $d\geq 2$, can be \emph {exactly emulated} by neural networks combining ReLU and ReLU$^2$ activations. \endgraf On shape-regular, simplicial partitions of polytopal domains ${\rm D}$, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the $hp$ finite element space of I. M. Babuška and B. Q. Guo.
We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains ${\rm D} \subset \mathbb R^d$, $d=2,3$. We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in ${\rm D}$, comprising the countably-normed spaces of I. M. Babuška and B. Q. Guo. \endgraf As intermediate result, we prove that continuous, piecewise polynomial high order (``$p$-version'') finite elements with elementwise polynomial degree $p\in \mathbb{N} $ on arbitrary, regular, simplicial partitions of polyhedral domains ${\rm D} \subset \mathbb R^d$, $d\geq 2$, can be \emph {exactly emulated} by neural networks combining ReLU and ReLU$^2$ activations. \endgraf On shape-regular, simplicial partitions of polytopal domains ${\rm D}$, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the $hp$ finite element space of I. M. Babuška and B. Q. Guo.
Classification :
41A25, 65N30
Keywords: neural network; $hp$-finite element method; singularities; Gevrey regularity; exponential convergence
Keywords: neural network; $hp$-finite element method; singularities; Gevrey regularity; exponential convergence
@article{10_21136_AM_2024_0052_24,
author = {Opschoor, Joost A. A. and Schwab, Christoph},
title = {Exponential expressivity of ${\rm ReLU}^k$ neural networks on {Gevrey} classes with point singularities},
journal = {Applications of Mathematics},
pages = {695--724},
year = {2024},
volume = {69},
number = {5},
doi = {10.21136/AM.2024.0052-24},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0052-24/}
}
TY - JOUR
AU - Opschoor, Joost A. A.
AU - Schwab, Christoph
TI - Exponential expressivity of ${\rm ReLU}^k$ neural networks on Gevrey classes with point singularities
JO - Applications of Mathematics
PY - 2024
SP - 695
EP - 724
VL - 69
IS - 5
UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0052-24/
DO - 10.21136/AM.2024.0052-24
LA - en
ID - 10_21136_AM_2024_0052_24
ER -
%0 Journal Article
%A Opschoor, Joost A. A.
%A Schwab, Christoph
%T Exponential expressivity of ${\rm ReLU}^k$ neural networks on Gevrey classes with point singularities
%J Applications of Mathematics
%D 2024
%P 695-724
%V 69
%N 5
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0052-24/
%R 10.21136/AM.2024.0052-24
%G en
%F 10_21136_AM_2024_0052_24
Opschoor, Joost A. A.; Schwab, Christoph. Exponential expressivity of ${\rm ReLU}^k$ neural networks on Gevrey classes with point singularities. Applications of Mathematics, Tome 69 (2024) no. 5, pp. 695-724. doi: 10.21136/AM.2024.0052-24
Cité par Sources :