Exponential expressivity of ${\rm ReLU}^k$ neural networks on Gevrey classes with point singularities
Applications of Mathematics, Tome 69 (2024) no. 5, pp. 695-724 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains ${\rm D} \subset \mathbb R^d$, $d=2,3$. We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in ${\rm D}$, comprising the countably-normed spaces of I. M. Babuška and B. Q. Guo. \endgraf As intermediate result, we prove that continuous, piecewise polynomial high order (``$p$-version'') finite elements with elementwise polynomial degree $p\in \mathbb{N} $ on arbitrary, regular, simplicial partitions of polyhedral domains ${\rm D} \subset \mathbb R^d$, $d\geq 2$, can be \emph {exactly emulated} by neural networks combining ReLU and ReLU$^2$ activations. \endgraf On shape-regular, simplicial partitions of polytopal domains ${\rm D}$, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the $hp$ finite element space of I. M. Babuška and B. Q. Guo.
We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains ${\rm D} \subset \mathbb R^d$, $d=2,3$. We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in ${\rm D}$, comprising the countably-normed spaces of I. M. Babuška and B. Q. Guo. \endgraf As intermediate result, we prove that continuous, piecewise polynomial high order (``$p$-version'') finite elements with elementwise polynomial degree $p\in \mathbb{N} $ on arbitrary, regular, simplicial partitions of polyhedral domains ${\rm D} \subset \mathbb R^d$, $d\geq 2$, can be \emph {exactly emulated} by neural networks combining ReLU and ReLU$^2$ activations. \endgraf On shape-regular, simplicial partitions of polytopal domains ${\rm D}$, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the $hp$ finite element space of I. M. Babuška and B. Q. Guo.
DOI : 10.21136/AM.2024.0052-24
Classification : 41A25, 65N30
Keywords: neural network; $hp$-finite element method; singularities; Gevrey regularity; exponential convergence
@article{10_21136_AM_2024_0052_24,
     author = {Opschoor, Joost A. A. and Schwab, Christoph},
     title = {Exponential expressivity of ${\rm ReLU}^k$ neural networks on {Gevrey} classes with point singularities},
     journal = {Applications of Mathematics},
     pages = {695--724},
     year = {2024},
     volume = {69},
     number = {5},
     doi = {10.21136/AM.2024.0052-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0052-24/}
}
TY  - JOUR
AU  - Opschoor, Joost A. A.
AU  - Schwab, Christoph
TI  - Exponential expressivity of ${\rm ReLU}^k$ neural networks on Gevrey classes with point singularities
JO  - Applications of Mathematics
PY  - 2024
SP  - 695
EP  - 724
VL  - 69
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0052-24/
DO  - 10.21136/AM.2024.0052-24
LA  - en
ID  - 10_21136_AM_2024_0052_24
ER  - 
%0 Journal Article
%A Opschoor, Joost A. A.
%A Schwab, Christoph
%T Exponential expressivity of ${\rm ReLU}^k$ neural networks on Gevrey classes with point singularities
%J Applications of Mathematics
%D 2024
%P 695-724
%V 69
%N 5
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0052-24/
%R 10.21136/AM.2024.0052-24
%G en
%F 10_21136_AM_2024_0052_24
Opschoor, Joost A. A.; Schwab, Christoph. Exponential expressivity of ${\rm ReLU}^k$ neural networks on Gevrey classes with point singularities. Applications of Mathematics, Tome 69 (2024) no. 5, pp. 695-724. doi: 10.21136/AM.2024.0052-24

Cité par Sources :