Error estimation for finite element solutions on meshes that contain thin elements
Applications of Mathematics, Tome 69 (2024) no. 5, pp. 571-588 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if ``bad'' elements that violate the shape regularity or maximum angle condition are covered virtually by simplices that satisfy the minimum angle condition. A numerical experiment illustrates the theoretical result.
In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if ``bad'' elements that violate the shape regularity or maximum angle condition are covered virtually by simplices that satisfy the minimum angle condition. A numerical experiment illustrates the theoretical result.
DOI : 10.21136/AM.2024.0047-24
Classification : 65D05, 65N30
Keywords: finite element method; triangulation; minimum and maximum angle condition; shape regularity condition; bad triangles
@article{10_21136_AM_2024_0047_24,
     author = {Kobayashi, Kenta and Tsuchiya, Takuya},
     title = {Error estimation for finite element solutions on meshes that contain thin elements},
     journal = {Applications of Mathematics},
     pages = {571--588},
     year = {2024},
     volume = {69},
     number = {5},
     doi = {10.21136/AM.2024.0047-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0047-24/}
}
TY  - JOUR
AU  - Kobayashi, Kenta
AU  - Tsuchiya, Takuya
TI  - Error estimation for finite element solutions on meshes that contain thin elements
JO  - Applications of Mathematics
PY  - 2024
SP  - 571
EP  - 588
VL  - 69
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0047-24/
DO  - 10.21136/AM.2024.0047-24
LA  - en
ID  - 10_21136_AM_2024_0047_24
ER  - 
%0 Journal Article
%A Kobayashi, Kenta
%A Tsuchiya, Takuya
%T Error estimation for finite element solutions on meshes that contain thin elements
%J Applications of Mathematics
%D 2024
%P 571-588
%V 69
%N 5
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0047-24/
%R 10.21136/AM.2024.0047-24
%G en
%F 10_21136_AM_2024_0047_24
Kobayashi, Kenta; Tsuchiya, Takuya. Error estimation for finite element solutions on meshes that contain thin elements. Applications of Mathematics, Tome 69 (2024) no. 5, pp. 571-588. doi: 10.21136/AM.2024.0047-24

Cité par Sources :