Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors
Applications of Mathematics, Tome 69 (2024) no. 4, pp. 513-540
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We are concerned with a simplified quantum energy-transport model for bipolar semiconductors, which consists of nonlinear parabolic fourth-order equations for the electron and hole density; degenerate elliptic heat equations for the electron and hole temperature; and Poisson equation for the electric potential. For the periodic boundary value problem in the torus $\mathbb {T}^d$, the global existence of weak solutions is proved, based on a time-discretization, an entropy-type estimate, and a fixed-point argument. Furthermore, the semiclassical limit is obtained by using a priori estimates independent of the scaled Planck constant.
We are concerned with a simplified quantum energy-transport model for bipolar semiconductors, which consists of nonlinear parabolic fourth-order equations for the electron and hole density; degenerate elliptic heat equations for the electron and hole temperature; and Poisson equation for the electric potential. For the periodic boundary value problem in the torus $\mathbb {T}^d$, the global existence of weak solutions is proved, based on a time-discretization, an entropy-type estimate, and a fixed-point argument. Furthermore, the semiclassical limit is obtained by using a priori estimates independent of the scaled Planck constant.
DOI :
10.21136/AM.2024.0016-24
Classification :
35K20, 82D37
Keywords: quantum energy-transport model; time-discretization; periodic boundary value problem; bipolar semiconductor
Keywords: quantum energy-transport model; time-discretization; periodic boundary value problem; bipolar semiconductor
@article{10_21136_AM_2024_0016_24,
author = {Ra, Sungjin and Jang, Choljin and Hong, Jinmyong},
title = {Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors},
journal = {Applications of Mathematics},
pages = {513--540},
year = {2024},
volume = {69},
number = {4},
doi = {10.21136/AM.2024.0016-24},
mrnumber = {4785696},
zbl = {07953651},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0016-24/}
}
TY - JOUR AU - Ra, Sungjin AU - Jang, Choljin AU - Hong, Jinmyong TI - Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors JO - Applications of Mathematics PY - 2024 SP - 513 EP - 540 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0016-24/ DO - 10.21136/AM.2024.0016-24 LA - en ID - 10_21136_AM_2024_0016_24 ER -
%0 Journal Article %A Ra, Sungjin %A Jang, Choljin %A Hong, Jinmyong %T Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors %J Applications of Mathematics %D 2024 %P 513-540 %V 69 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0016-24/ %R 10.21136/AM.2024.0016-24 %G en %F 10_21136_AM_2024_0016_24
Ra, Sungjin; Jang, Choljin; Hong, Jinmyong. Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors. Applications of Mathematics, Tome 69 (2024) no. 4, pp. 513-540. doi: 10.21136/AM.2024.0016-24
Cité par Sources :