Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors
Applications of Mathematics, Tome 69 (2024) no. 4, pp. 513-540 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We are concerned with a simplified quantum energy-transport model for bipolar semiconductors, which consists of nonlinear parabolic fourth-order equations for the electron and hole density; degenerate elliptic heat equations for the electron and hole temperature; and Poisson equation for the electric potential. For the periodic boundary value problem in the torus $\mathbb {T}^d$, the global existence of weak solutions is proved, based on a time-discretization, an entropy-type estimate, and a fixed-point argument. Furthermore, the semiclassical limit is obtained by using a priori estimates independent of the scaled Planck constant.
We are concerned with a simplified quantum energy-transport model for bipolar semiconductors, which consists of nonlinear parabolic fourth-order equations for the electron and hole density; degenerate elliptic heat equations for the electron and hole temperature; and Poisson equation for the electric potential. For the periodic boundary value problem in the torus $\mathbb {T}^d$, the global existence of weak solutions is proved, based on a time-discretization, an entropy-type estimate, and a fixed-point argument. Furthermore, the semiclassical limit is obtained by using a priori estimates independent of the scaled Planck constant.
DOI : 10.21136/AM.2024.0016-24
Classification : 35K20, 82D37
Keywords: quantum energy-transport model; time-discretization; periodic boundary value problem; bipolar semiconductor
@article{10_21136_AM_2024_0016_24,
     author = {Ra, Sungjin and Jang, Choljin and Hong, Jinmyong},
     title = {Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors},
     journal = {Applications of Mathematics},
     pages = {513--540},
     year = {2024},
     volume = {69},
     number = {4},
     doi = {10.21136/AM.2024.0016-24},
     mrnumber = {4785696},
     zbl = {07953651},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0016-24/}
}
TY  - JOUR
AU  - Ra, Sungjin
AU  - Jang, Choljin
AU  - Hong, Jinmyong
TI  - Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors
JO  - Applications of Mathematics
PY  - 2024
SP  - 513
EP  - 540
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0016-24/
DO  - 10.21136/AM.2024.0016-24
LA  - en
ID  - 10_21136_AM_2024_0016_24
ER  - 
%0 Journal Article
%A Ra, Sungjin
%A Jang, Choljin
%A Hong, Jinmyong
%T Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors
%J Applications of Mathematics
%D 2024
%P 513-540
%V 69
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2024.0016-24/
%R 10.21136/AM.2024.0016-24
%G en
%F 10_21136_AM_2024_0016_24
Ra, Sungjin; Jang, Choljin; Hong, Jinmyong. Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors. Applications of Mathematics, Tome 69 (2024) no. 4, pp. 513-540. doi: 10.21136/AM.2024.0016-24

Cité par Sources :