Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_AM_2023_0264_22, author = {Han, Wonho and Kim, Kwangil and Hong, Unhyok}, title = {Convergence of a proposed adaptive {WENO} scheme for {Hamilton-Jacobi} equations}, journal = {Applications of Mathematics}, pages = {661--684}, publisher = {mathdoc}, volume = {68}, number = {5}, year = {2023}, doi = {10.21136/AM.2023.0264-22}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2023.0264-22/} }
TY - JOUR AU - Han, Wonho AU - Kim, Kwangil AU - Hong, Unhyok TI - Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations JO - Applications of Mathematics PY - 2023 SP - 661 EP - 684 VL - 68 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2023.0264-22/ DO - 10.21136/AM.2023.0264-22 LA - en ID - 10_21136_AM_2023_0264_22 ER -
%0 Journal Article %A Han, Wonho %A Kim, Kwangil %A Hong, Unhyok %T Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations %J Applications of Mathematics %D 2023 %P 661-684 %V 68 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2023.0264-22/ %R 10.21136/AM.2023.0264-22 %G en %F 10_21136_AM_2023_0264_22
Han, Wonho; Kim, Kwangil; Hong, Unhyok. Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations. Applications of Mathematics, Tome 68 (2023) no. 5, pp. 661-684. doi : 10.21136/AM.2023.0264-22. http://geodesic.mathdoc.fr/articles/10.21136/AM.2023.0264-22/
Cité par Sources :