Resilient asynchronous primal Schur method
Applications of Mathematics, Tome 67 (2022) no. 6, pp. 679-704
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This paper introduces the application of asynchronous iterations theory within the framework of the primal Schur domain decomposition method. A suitable relaxation scheme is designed, whose asynchronous convergence is established under classical spectral radius conditions. For the usual case where local Schur complement matrices are not constructed, suitable splittings based only on explicitly generated matrices are provided. Numerical experiments are conducted on a supercomputer for both Poisson's and linear elasticity problems. The asynchronous Schur solver outperformed the classical conjugate-gradient-based one in case of computing node failures.
DOI :
10.21136/AM.2022.0146-21
Classification :
49M20, 65F10, 65N55, 65Y05
Keywords: asynchronous iterations; Schur complement method; domain decomposition method; parallel computing
Keywords: asynchronous iterations; Schur complement method; domain decomposition method; parallel computing
@article{10_21136_AM_2022_0146_21,
author = {Gbikpi-Benissan, Guillaume and Magoul\`es, Fr\'ed\'eric},
title = {Resilient asynchronous primal {Schur} method},
journal = {Applications of Mathematics},
pages = {679--704},
publisher = {mathdoc},
volume = {67},
number = {6},
year = {2022},
doi = {10.21136/AM.2022.0146-21},
mrnumber = {4505700},
zbl = {07613019},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2022.0146-21/}
}
TY - JOUR AU - Gbikpi-Benissan, Guillaume AU - Magoulès, Frédéric TI - Resilient asynchronous primal Schur method JO - Applications of Mathematics PY - 2022 SP - 679 EP - 704 VL - 67 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2022.0146-21/ DO - 10.21136/AM.2022.0146-21 LA - en ID - 10_21136_AM_2022_0146_21 ER -
%0 Journal Article %A Gbikpi-Benissan, Guillaume %A Magoulès, Frédéric %T Resilient asynchronous primal Schur method %J Applications of Mathematics %D 2022 %P 679-704 %V 67 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2022.0146-21/ %R 10.21136/AM.2022.0146-21 %G en %F 10_21136_AM_2022_0146_21
Gbikpi-Benissan, Guillaume; Magoulès, Frédéric. Resilient asynchronous primal Schur method. Applications of Mathematics, Tome 67 (2022) no. 6, pp. 679-704. doi: 10.21136/AM.2022.0146-21
Cité par Sources :