Resilient asynchronous primal Schur method
Applications of Mathematics, Tome 67 (2022) no. 6, pp. 679-704.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper introduces the application of asynchronous iterations theory within the framework of the primal Schur domain decomposition method. A suitable relaxation scheme is designed, whose asynchronous convergence is established under classical spectral radius conditions. For the usual case where local Schur complement matrices are not constructed, suitable splittings based only on explicitly generated matrices are provided. Numerical experiments are conducted on a supercomputer for both Poisson's and linear elasticity problems. The asynchronous Schur solver outperformed the classical conjugate-gradient-based one in case of computing node failures.
DOI : 10.21136/AM.2022.0146-21
Classification : 49M20, 65F10, 65N55, 65Y05
Keywords: asynchronous iterations; Schur complement method; domain decomposition method; parallel computing
@article{10_21136_AM_2022_0146_21,
     author = {Gbikpi-Benissan, Guillaume and Magoul\`es, Fr\'ed\'eric},
     title = {Resilient asynchronous primal {Schur} method},
     journal = {Applications of Mathematics},
     pages = {679--704},
     publisher = {mathdoc},
     volume = {67},
     number = {6},
     year = {2022},
     doi = {10.21136/AM.2022.0146-21},
     mrnumber = {4505700},
     zbl = {07613019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2022.0146-21/}
}
TY  - JOUR
AU  - Gbikpi-Benissan, Guillaume
AU  - Magoulès, Frédéric
TI  - Resilient asynchronous primal Schur method
JO  - Applications of Mathematics
PY  - 2022
SP  - 679
EP  - 704
VL  - 67
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2022.0146-21/
DO  - 10.21136/AM.2022.0146-21
LA  - en
ID  - 10_21136_AM_2022_0146_21
ER  - 
%0 Journal Article
%A Gbikpi-Benissan, Guillaume
%A Magoulès, Frédéric
%T Resilient asynchronous primal Schur method
%J Applications of Mathematics
%D 2022
%P 679-704
%V 67
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2022.0146-21/
%R 10.21136/AM.2022.0146-21
%G en
%F 10_21136_AM_2022_0146_21
Gbikpi-Benissan, Guillaume; Magoulès, Frédéric. Resilient asynchronous primal Schur method. Applications of Mathematics, Tome 67 (2022) no. 6, pp. 679-704. doi : 10.21136/AM.2022.0146-21. http://geodesic.mathdoc.fr/articles/10.21136/AM.2022.0146-21/

Cité par Sources :