Low Mach number limit of a compressible Euler-Korteweg model
Applications of Mathematics, Tome 68 (2023) no. 1, pp. 99-108
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.
This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.
DOI :
10.21136/AM.2022.0067-21
Classification :
35B40, 35Q31, 35Q35
Keywords: Euler-Korteweg equation; compressible flow; low Mach number limit; modulated energy function
Keywords: Euler-Korteweg equation; compressible flow; low Mach number limit; modulated energy function
@article{10_21136_AM_2022_0067_21,
author = {Wang, Yajie and Yang, Jianwei},
title = {Low {Mach} number limit of a compressible {Euler-Korteweg} model},
journal = {Applications of Mathematics},
pages = {99--108},
year = {2023},
volume = {68},
number = {1},
doi = {10.21136/AM.2022.0067-21},
mrnumber = {4541077},
zbl = {07655741},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2022.0067-21/}
}
TY - JOUR AU - Wang, Yajie AU - Yang, Jianwei TI - Low Mach number limit of a compressible Euler-Korteweg model JO - Applications of Mathematics PY - 2023 SP - 99 EP - 108 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2022.0067-21/ DO - 10.21136/AM.2022.0067-21 LA - en ID - 10_21136_AM_2022_0067_21 ER -
%0 Journal Article %A Wang, Yajie %A Yang, Jianwei %T Low Mach number limit of a compressible Euler-Korteweg model %J Applications of Mathematics %D 2023 %P 99-108 %V 68 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2022.0067-21/ %R 10.21136/AM.2022.0067-21 %G en %F 10_21136_AM_2022_0067_21
Wang, Yajie; Yang, Jianwei. Low Mach number limit of a compressible Euler-Korteweg model. Applications of Mathematics, Tome 68 (2023) no. 1, pp. 99-108. doi: 10.21136/AM.2022.0067-21
Cité par Sources :