Low Mach number limit of a compressible Euler-Korteweg model
Applications of Mathematics, Tome 68 (2023) no. 1, pp. 99-108.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.
DOI : 10.21136/AM.2022.0067-21
Classification : 35B40, 35Q31, 35Q35
Keywords: Euler-Korteweg equation; compressible flow; low Mach number limit; modulated energy function
@article{10_21136_AM_2022_0067_21,
     author = {Wang, Yajie and Yang, Jianwei},
     title = {Low {Mach} number limit of a compressible {Euler-Korteweg} model},
     journal = {Applications of Mathematics},
     pages = {99--108},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2023},
     doi = {10.21136/AM.2022.0067-21},
     mrnumber = {4541077},
     zbl = {07655741},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2022.0067-21/}
}
TY  - JOUR
AU  - Wang, Yajie
AU  - Yang, Jianwei
TI  - Low Mach number limit of a compressible Euler-Korteweg model
JO  - Applications of Mathematics
PY  - 2023
SP  - 99
EP  - 108
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2022.0067-21/
DO  - 10.21136/AM.2022.0067-21
LA  - en
ID  - 10_21136_AM_2022_0067_21
ER  - 
%0 Journal Article
%A Wang, Yajie
%A Yang, Jianwei
%T Low Mach number limit of a compressible Euler-Korteweg model
%J Applications of Mathematics
%D 2023
%P 99-108
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2022.0067-21/
%R 10.21136/AM.2022.0067-21
%G en
%F 10_21136_AM_2022_0067_21
Wang, Yajie; Yang, Jianwei. Low Mach number limit of a compressible Euler-Korteweg model. Applications of Mathematics, Tome 68 (2023) no. 1, pp. 99-108. doi : 10.21136/AM.2022.0067-21. http://geodesic.mathdoc.fr/articles/10.21136/AM.2022.0067-21/

Cité par Sources :