Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes
Applications of Mathematics, Tome 66 (2021) no. 4, pp. 599-617
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We propose a method of constructing convergent high order schemes for Hamilton-Jacobi equations on triangular meshes, which is based on combining a high order scheme with a first order monotone scheme. According to this methodology, we construct adaptive schemes of weighted essentially non-oscillatory type on triangular meshes for nonconvex Hamilton-Jacobi equations in which the first order monotone approximations are occasionally applied near singular points of the solution (discontinuities of the derivative) instead of weighted essentially non-oscillatory approximations. Through detailed numerical experiments, the convergence and effectiveness of the proposed adaptive schemes are demonstrated.
DOI :
10.21136/AM.2021.0368-19
Classification :
35F21, 65M12, 65M50
Keywords: Hamilton-Jacobi equation; first order monotone scheme; high order scheme; weighted essentially non-oscillatory scheme; adaptive scheme; convergence
Keywords: Hamilton-Jacobi equation; first order monotone scheme; high order scheme; weighted essentially non-oscillatory scheme; adaptive scheme; convergence
@article{10_21136_AM_2021_0368_19,
author = {Kim, Kwangil and Hong, Unhyok and Ri, Kwanhung and Yu, Juhyon},
title = {Construction of convergent adaptive weighted essentially non-oscillatory schemes for {Hamilton-Jacobi} equations on triangular meshes},
journal = {Applications of Mathematics},
pages = {599--617},
publisher = {mathdoc},
volume = {66},
number = {4},
year = {2021},
doi = {10.21136/AM.2021.0368-19},
mrnumber = {4283305},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0368-19/}
}
TY - JOUR AU - Kim, Kwangil AU - Hong, Unhyok AU - Ri, Kwanhung AU - Yu, Juhyon TI - Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes JO - Applications of Mathematics PY - 2021 SP - 599 EP - 617 VL - 66 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0368-19/ DO - 10.21136/AM.2021.0368-19 LA - en ID - 10_21136_AM_2021_0368_19 ER -
%0 Journal Article %A Kim, Kwangil %A Hong, Unhyok %A Ri, Kwanhung %A Yu, Juhyon %T Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes %J Applications of Mathematics %D 2021 %P 599-617 %V 66 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0368-19/ %R 10.21136/AM.2021.0368-19 %G en %F 10_21136_AM_2021_0368_19
Kim, Kwangil; Hong, Unhyok; Ri, Kwanhung; Yu, Juhyon. Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes. Applications of Mathematics, Tome 66 (2021) no. 4, pp. 599-617. doi: 10.21136/AM.2021.0368-19
Cité par Sources :