Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_AM_2021_0368_19, author = {Kim, Kwangil and Hong, Unhyok and Ri, Kwanhung and Yu, Juhyon}, title = {Construction of convergent adaptive weighted essentially non-oscillatory schemes for {Hamilton-Jacobi} equations on triangular meshes}, journal = {Applications of Mathematics}, pages = {599--617}, publisher = {mathdoc}, volume = {66}, number = {4}, year = {2021}, doi = {10.21136/AM.2021.0368-19}, mrnumber = {4283305}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0368-19/} }
TY - JOUR AU - Kim, Kwangil AU - Hong, Unhyok AU - Ri, Kwanhung AU - Yu, Juhyon TI - Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes JO - Applications of Mathematics PY - 2021 SP - 599 EP - 617 VL - 66 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0368-19/ DO - 10.21136/AM.2021.0368-19 LA - en ID - 10_21136_AM_2021_0368_19 ER -
%0 Journal Article %A Kim, Kwangil %A Hong, Unhyok %A Ri, Kwanhung %A Yu, Juhyon %T Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes %J Applications of Mathematics %D 2021 %P 599-617 %V 66 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0368-19/ %R 10.21136/AM.2021.0368-19 %G en %F 10_21136_AM_2021_0368_19
Kim, Kwangil; Hong, Unhyok; Ri, Kwanhung; Yu, Juhyon. Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes. Applications of Mathematics, Tome 66 (2021) no. 4, pp. 599-617. doi : 10.21136/AM.2021.0368-19. http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0368-19/
Cité par Sources :