Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes
Applications of Mathematics, Tome 66 (2021) no. 4, pp. 599-617.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We propose a method of constructing convergent high order schemes for Hamilton-Jacobi equations on triangular meshes, which is based on combining a high order scheme with a first order monotone scheme. According to this methodology, we construct adaptive schemes of weighted essentially non-oscillatory type on triangular meshes for nonconvex Hamilton-Jacobi equations in which the first order monotone approximations are occasionally applied near singular points of the solution (discontinuities of the derivative) instead of weighted essentially non-oscillatory approximations. Through detailed numerical experiments, the convergence and effectiveness of the proposed adaptive schemes are demonstrated.
DOI : 10.21136/AM.2021.0368-19
Classification : 35F21, 65M12, 65M50
Keywords: Hamilton-Jacobi equation; first order monotone scheme; high order scheme; weighted essentially non-oscillatory scheme; adaptive scheme; convergence
@article{10_21136_AM_2021_0368_19,
     author = {Kim, Kwangil and Hong, Unhyok and Ri, Kwanhung and Yu, Juhyon},
     title = {Construction of convergent adaptive weighted essentially non-oscillatory schemes for {Hamilton-Jacobi} equations on triangular meshes},
     journal = {Applications of Mathematics},
     pages = {599--617},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2021},
     doi = {10.21136/AM.2021.0368-19},
     mrnumber = {4283305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0368-19/}
}
TY  - JOUR
AU  - Kim, Kwangil
AU  - Hong, Unhyok
AU  - Ri, Kwanhung
AU  - Yu, Juhyon
TI  - Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes
JO  - Applications of Mathematics
PY  - 2021
SP  - 599
EP  - 617
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0368-19/
DO  - 10.21136/AM.2021.0368-19
LA  - en
ID  - 10_21136_AM_2021_0368_19
ER  - 
%0 Journal Article
%A Kim, Kwangil
%A Hong, Unhyok
%A Ri, Kwanhung
%A Yu, Juhyon
%T Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes
%J Applications of Mathematics
%D 2021
%P 599-617
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0368-19/
%R 10.21136/AM.2021.0368-19
%G en
%F 10_21136_AM_2021_0368_19
Kim, Kwangil; Hong, Unhyok; Ri, Kwanhung; Yu, Juhyon. Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes. Applications of Mathematics, Tome 66 (2021) no. 4, pp. 599-617. doi : 10.21136/AM.2021.0368-19. http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0368-19/

Cité par Sources :