Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations
Applications of Mathematics, Tome 66 (2021) no. 4, pp. 461-478

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this article, we study the existence of nontrivial weak solutions for the following boundary value problem: $$ -\Delta _\gamma u=f(x,u) \ \text {in} \ \Omega , \quad u=0 \ \text {on} \ \partial \Omega , $$ where $\Omega $ is a bounded domain with smooth boundary in $\mathbb {R}^N$, $\Omega \cap \{x_j=0\}\ne \emptyset $ for some $j$, $\Delta _{\gamma }$ is a subelliptic linear operator of the type $$ \Delta _\gamma : =\sum _{j=1}^{N}\partial _{x_j} (\gamma _j^2 \partial _{x_j} ), \quad \partial _{x_j}:=\frac {\partial }{\partial x_{j}}, \quad N\ge 2, $$ where $\gamma (x) = (\gamma _1(x), \gamma _2(x),\dots ,\gamma _N(x))$ satisfies certain homogeneity conditions and degenerates at the coordinate hyperplanes and the nonlinearity $f(x,\xi )$ is of subcritical growth and does not satisfy the Ambrosetti-Rabinowitz (AR) condition.
DOI : 10.21136/AM.2021.0363-19
Classification : 35D30, 35J20, 35J25, 35J70
Keywords: $\Delta _\gamma $-Laplace problem; Cerami condition; variational method; weak solution; Mountain Pass Theorem
@article{10_21136_AM_2021_0363_19,
     author = {Luyen, Duong Trong},
     title = {Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations},
     journal = {Applications of Mathematics},
     pages = {461--478},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2021},
     doi = {10.21136/AM.2021.0363-19},
     mrnumber = {4283300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0363-19/}
}
TY  - JOUR
AU  - Luyen, Duong Trong
TI  - Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations
JO  - Applications of Mathematics
PY  - 2021
SP  - 461
EP  - 478
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0363-19/
DO  - 10.21136/AM.2021.0363-19
LA  - en
ID  - 10_21136_AM_2021_0363_19
ER  - 
%0 Journal Article
%A Luyen, Duong Trong
%T Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations
%J Applications of Mathematics
%D 2021
%P 461-478
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0363-19/
%R 10.21136/AM.2021.0363-19
%G en
%F 10_21136_AM_2021_0363_19
Luyen, Duong Trong. Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations. Applications of Mathematics, Tome 66 (2021) no. 4, pp. 461-478. doi: 10.21136/AM.2021.0363-19

Cité par Sources :