Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations
Applications of Mathematics, Tome 66 (2021) no. 4, pp. 461-478.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this article, we study the existence of nontrivial weak solutions for the following boundary value problem: $$ -\Delta _\gamma u=f(x,u) \ \text {in} \ \Omega , \quad u=0 \ \text {on} \ \partial \Omega , $$ where $\Omega $ is a bounded domain with smooth boundary in $\mathbb {R}^N$, $\Omega \cap \{x_j=0\}\ne \emptyset $ for some $j$, $\Delta _{\gamma }$ is a subelliptic linear operator of the type $$ \Delta _\gamma : =\sum _{j=1}^{N}\partial _{x_j} (\gamma _j^2 \partial _{x_j} ), \quad \partial _{x_j}:=\frac {\partial }{\partial x_{j}}, \quad N\ge 2, $$ where $\gamma (x) = (\gamma _1(x), \gamma _2(x),\dots ,\gamma _N(x))$ satisfies certain homogeneity conditions and degenerates at the coordinate hyperplanes and the nonlinearity $f(x,\xi )$ is of subcritical growth and does not satisfy the Ambrosetti-Rabinowitz (AR) condition.
DOI : 10.21136/AM.2021.0363-19
Classification : 35D30, 35J20, 35J25, 35J70
Keywords: $\Delta _\gamma $-Laplace problem; Cerami condition; variational method; weak solution; Mountain Pass Theorem
@article{10_21136_AM_2021_0363_19,
     author = {Luyen, Duong Trong},
     title = {Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations},
     journal = {Applications of Mathematics},
     pages = {461--478},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2021},
     doi = {10.21136/AM.2021.0363-19},
     mrnumber = {4283300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0363-19/}
}
TY  - JOUR
AU  - Luyen, Duong Trong
TI  - Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations
JO  - Applications of Mathematics
PY  - 2021
SP  - 461
EP  - 478
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0363-19/
DO  - 10.21136/AM.2021.0363-19
LA  - en
ID  - 10_21136_AM_2021_0363_19
ER  - 
%0 Journal Article
%A Luyen, Duong Trong
%T Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations
%J Applications of Mathematics
%D 2021
%P 461-478
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0363-19/
%R 10.21136/AM.2021.0363-19
%G en
%F 10_21136_AM_2021_0363_19
Luyen, Duong Trong. Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations. Applications of Mathematics, Tome 66 (2021) no. 4, pp. 461-478. doi : 10.21136/AM.2021.0363-19. http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0363-19/

Cité par Sources :