Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations
Applications of Mathematics, Tome 67 (2022) no. 4, pp. 485-507
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that $$ |\omega ^r(x,t)|+|\omega ^z(r,t)|\leq \frac {C}{r^{10}},\quad 0\leq \frac {1}{2}. $$ By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing $\omega ^r$, $\omega ^z$ and $\omega ^\theta /r$ on different hollow cylinders, we are able to improve it and obtain $$ |\omega ^r(x,t)|+|\omega ^z(r,t)|\leq \frac {C|{\rm ln} r|}{r^{17/2}},\quad 0\leq \frac 12. $$
We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that $$ |\omega ^r(x,t)|+|\omega ^z(r,t)|\leq \frac {C}{r^{10}},\quad 0\leq \frac {1}{2}. $$ By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing $\omega ^r$, $\omega ^z$ and $\omega ^\theta /r$ on different hollow cylinders, we are able to improve it and obtain $$ |\omega ^r(x,t)|+|\omega ^z(r,t)|\leq \frac {C|{\rm ln} r|}{r^{17/2}},\quad 0\leq \frac 12. $$
DOI :
10.21136/AM.2021.0344-20
Classification :
35B65, 35Q35, 76D03
Keywords: axisymmetric Navier-Stokes equations; weighted a priori bounds
Keywords: axisymmetric Navier-Stokes equations; weighted a priori bounds
@article{10_21136_AM_2021_0344_20,
author = {Zhang, Zujin and Tong, Chenxuan},
title = {Remarks on the a priori bound for the vorticity of the axisymmetric {Navier-Stokes} equations},
journal = {Applications of Mathematics},
pages = {485--507},
year = {2022},
volume = {67},
number = {4},
doi = {10.21136/AM.2021.0344-20},
mrnumber = {4444789},
zbl = {07584082},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0344-20/}
}
TY - JOUR AU - Zhang, Zujin AU - Tong, Chenxuan TI - Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations JO - Applications of Mathematics PY - 2022 SP - 485 EP - 507 VL - 67 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0344-20/ DO - 10.21136/AM.2021.0344-20 LA - en ID - 10_21136_AM_2021_0344_20 ER -
%0 Journal Article %A Zhang, Zujin %A Tong, Chenxuan %T Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations %J Applications of Mathematics %D 2022 %P 485-507 %V 67 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0344-20/ %R 10.21136/AM.2021.0344-20 %G en %F 10_21136_AM_2021_0344_20
Zhang, Zujin; Tong, Chenxuan. Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations. Applications of Mathematics, Tome 67 (2022) no. 4, pp. 485-507. doi: 10.21136/AM.2021.0344-20
Cité par Sources :