$H^2$ convergence of solutions of a biharmonic problem on a truncated convex sector near the angle $\pi $
Applications of Mathematics, Tome 66 (2021) no. 3, pp. 383-395.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a biharmonic problem $\Delta ^{2}u_{\omega }=f_\omega $ with Navier type boundary conditions $u_{\omega }=\Delta u_{\omega }=0$, on a family of truncated sectors $\Omega _{\omega }$ in $\mathbb {R}^2$ of radius $r$, $0$ and opening angle $\omega $, $\omega \in (2\pi /3,\pi ]$ when $\omega $ is close to $\pi $. The family of right-hand sides $(f_\omega )_{\omega \in (2\pi /3,\pi ]}$ is assumed to depend smoothly on $\omega $ in $L^{2}(\Omega _{\omega })$. The main result is that $u_{\omega }$ converges to $u_\pi $ when $ \omega \rightarrow \pi $ with respect to the $H^2$-norm. We can also show that the $H^2$-topology is optimal for such a convergence result.
DOI : 10.21136/AM.2021.0284-19
Classification : 35B40, 35B45, 35J25, 35J40, 35J75, 35Q99
Keywords: sector; convex; biharmonic; elliptic; singularity; convergence; Sobolev space
@article{10_21136_AM_2021_0284_19,
     author = {Tami, Abdelkader and Tlemcani, Mounir},
     title = {$H^2$ convergence of solutions of a biharmonic problem on a truncated convex sector  near the angle $\pi $},
     journal = {Applications of Mathematics},
     pages = {383--395},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {2021},
     doi = {10.21136/AM.2021.0284-19},
     mrnumber = {4263157},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0284-19/}
}
TY  - JOUR
AU  - Tami, Abdelkader
AU  - Tlemcani, Mounir
TI  - $H^2$ convergence of solutions of a biharmonic problem on a truncated convex sector  near the angle $\pi $
JO  - Applications of Mathematics
PY  - 2021
SP  - 383
EP  - 395
VL  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0284-19/
DO  - 10.21136/AM.2021.0284-19
LA  - en
ID  - 10_21136_AM_2021_0284_19
ER  - 
%0 Journal Article
%A Tami, Abdelkader
%A Tlemcani, Mounir
%T $H^2$ convergence of solutions of a biharmonic problem on a truncated convex sector  near the angle $\pi $
%J Applications of Mathematics
%D 2021
%P 383-395
%V 66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0284-19/
%R 10.21136/AM.2021.0284-19
%G en
%F 10_21136_AM_2021_0284_19
Tami, Abdelkader; Tlemcani, Mounir. $H^2$ convergence of solutions of a biharmonic problem on a truncated convex sector  near the angle $\pi $. Applications of Mathematics, Tome 66 (2021) no. 3, pp. 383-395. doi : 10.21136/AM.2021.0284-19. http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0284-19/

Cité par Sources :