$H^2$ convergence of solutions of a biharmonic problem on a truncated convex sector near the angle $\pi $
Applications of Mathematics, Tome 66 (2021) no. 3, pp. 383-395
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider a biharmonic problem $\Delta ^{2}u_{\omega }=f_\omega $ with Navier type boundary conditions $u_{\omega }=\Delta u_{\omega }=0$, on a family of truncated sectors $\Omega _{\omega }$ in $\mathbb {R}^2$ of radius $r$, $0$ and opening angle $\omega $, $\omega \in (2\pi /3,\pi ]$ when $\omega $ is close to $\pi $. The family of right-hand sides $(f_\omega )_{\omega \in (2\pi /3,\pi ]}$ is assumed to depend smoothly on $\omega $ in $L^{2}(\Omega _{\omega })$. The main result is that $u_{\omega }$ converges to $u_\pi $ when $ \omega \rightarrow \pi $ with respect to the $H^2$-norm. We can also show that the $H^2$-topology is optimal for such a convergence result.
DOI :
10.21136/AM.2021.0284-19
Classification :
35B40, 35B45, 35J25, 35J40, 35J75, 35Q99
Keywords: sector; convex; biharmonic; elliptic; singularity; convergence; Sobolev space
Keywords: sector; convex; biharmonic; elliptic; singularity; convergence; Sobolev space
@article{10_21136_AM_2021_0284_19,
author = {Tami, Abdelkader and Tlemcani, Mounir},
title = {$H^2$ convergence of solutions of a biharmonic problem on a truncated convex sector near the angle $\pi $},
journal = {Applications of Mathematics},
pages = {383--395},
publisher = {mathdoc},
volume = {66},
number = {3},
year = {2021},
doi = {10.21136/AM.2021.0284-19},
mrnumber = {4263157},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0284-19/}
}
TY - JOUR AU - Tami, Abdelkader AU - Tlemcani, Mounir TI - $H^2$ convergence of solutions of a biharmonic problem on a truncated convex sector near the angle $\pi $ JO - Applications of Mathematics PY - 2021 SP - 383 EP - 395 VL - 66 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0284-19/ DO - 10.21136/AM.2021.0284-19 LA - en ID - 10_21136_AM_2021_0284_19 ER -
%0 Journal Article %A Tami, Abdelkader %A Tlemcani, Mounir %T $H^2$ convergence of solutions of a biharmonic problem on a truncated convex sector near the angle $\pi $ %J Applications of Mathematics %D 2021 %P 383-395 %V 66 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0284-19/ %R 10.21136/AM.2021.0284-19 %G en %F 10_21136_AM_2021_0284_19
Tami, Abdelkader; Tlemcani, Mounir. $H^2$ convergence of solutions of a biharmonic problem on a truncated convex sector near the angle $\pi $. Applications of Mathematics, Tome 66 (2021) no. 3, pp. 383-395. doi: 10.21136/AM.2021.0284-19
Cité par Sources :