Local well-posedness for a two-phase model with magnetic field and vacuum
Applications of Mathematics, Tome 66 (2021) no. 4, pp. 619-639.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper proves the local well-posedness of strong solutions to a two-phase model with magnetic field and vacuum in a bounded domain $\Omega \subset \mathbb {R}^3$ without the standard compatibility conditions.
DOI : 10.21136/AM.2021.0222-19
Classification : 35D35, 35Q35, 76N10, 76T10
Keywords: two-phase flow; magnetic field; vacuum; local well-posedness
@article{10_21136_AM_2021_0222_19,
     author = {Yang, Xiuhui},
     title = {Local well-posedness for a two-phase model with magnetic field and vacuum},
     journal = {Applications of Mathematics},
     pages = {619--639},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2021},
     doi = {10.21136/AM.2021.0222-19},
     mrnumber = {4283306},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0222-19/}
}
TY  - JOUR
AU  - Yang, Xiuhui
TI  - Local well-posedness for a two-phase model with magnetic field and vacuum
JO  - Applications of Mathematics
PY  - 2021
SP  - 619
EP  - 639
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0222-19/
DO  - 10.21136/AM.2021.0222-19
LA  - en
ID  - 10_21136_AM_2021_0222_19
ER  - 
%0 Journal Article
%A Yang, Xiuhui
%T Local well-posedness for a two-phase model with magnetic field and vacuum
%J Applications of Mathematics
%D 2021
%P 619-639
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0222-19/
%R 10.21136/AM.2021.0222-19
%G en
%F 10_21136_AM_2021_0222_19
Yang, Xiuhui. Local well-posedness for a two-phase model with magnetic field and vacuum. Applications of Mathematics, Tome 66 (2021) no. 4, pp. 619-639. doi : 10.21136/AM.2021.0222-19. http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0222-19/

Cité par Sources :