Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_AM_2021_0180_19, author = {Xu, Hongmei and Li, Qi}, title = {Global existence and $L_p$ decay estimate of solution for {Cahn-Hilliard} equation with inertial term}, journal = {Applications of Mathematics}, pages = {583--597}, publisher = {mathdoc}, volume = {66}, number = {4}, year = {2021}, doi = {10.21136/AM.2021.0180-19}, mrnumber = {4283304}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0180-19/} }
TY - JOUR AU - Xu, Hongmei AU - Li, Qi TI - Global existence and $L_p$ decay estimate of solution for Cahn-Hilliard equation with inertial term JO - Applications of Mathematics PY - 2021 SP - 583 EP - 597 VL - 66 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0180-19/ DO - 10.21136/AM.2021.0180-19 LA - en ID - 10_21136_AM_2021_0180_19 ER -
%0 Journal Article %A Xu, Hongmei %A Li, Qi %T Global existence and $L_p$ decay estimate of solution for Cahn-Hilliard equation with inertial term %J Applications of Mathematics %D 2021 %P 583-597 %V 66 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0180-19/ %R 10.21136/AM.2021.0180-19 %G en %F 10_21136_AM_2021_0180_19
Xu, Hongmei; Li, Qi. Global existence and $L_p$ decay estimate of solution for Cahn-Hilliard equation with inertial term. Applications of Mathematics, Tome 66 (2021) no. 4, pp. 583-597. doi : 10.21136/AM.2021.0180-19. http://geodesic.mathdoc.fr/articles/10.21136/AM.2021.0180-19/
Cité par Sources :