Isocanted alcoved polytopes
Applications of Mathematics, Tome 65 (2020) no. 6, pp. 703-726
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Through tropical normal idempotent matrices, we introduce isocanted alcoved polytopes, computing their $f$-vectors and checking the validity of the following five conjectures: Bárány, unimodality, $3^d$, flag and cubical lower bound (CLBC). Isocanted alcoved polytopes are centrally symmetric, almost simple cubical polytopes. They are zonotopes. We show that, for each dimension, there is a unique combinatorial type. In dimension $d$, an isocanted alcoved polytope has $2^{d+1}-2$ vertices, its face lattice is the lattice of proper subsets of $[d+1]$ and its diameter is $d+1$. They are realizations of $d$-elementary cubical polytopes. The $f$-vector of a $d$-dimensional isocanted alcoved polytope attains its maximum at the integer $\lfloor d/3\rfloor $.
DOI :
10.21136/AM.2020.0373-19
Classification :
15A80, 52B12
Keywords: cubical polytope; isocanted; alcoved; centrally symmetric; almost simple; zonotope; $f$-vector; cubical $g$-vector; unimodal; flag; face lattice; log-concave sequence; tropical normal idempotent matrix; symmetric matrix
Keywords: cubical polytope; isocanted; alcoved; centrally symmetric; almost simple; zonotope; $f$-vector; cubical $g$-vector; unimodal; flag; face lattice; log-concave sequence; tropical normal idempotent matrix; symmetric matrix
@article{10_21136_AM_2020_0373_19,
author = {de la Puente, Mar{\'\i}a Jes\'us and Claver{\'\i}a, Pedro Luis},
title = {Isocanted alcoved polytopes},
journal = {Applications of Mathematics},
pages = {703--726},
publisher = {mathdoc},
volume = {65},
number = {6},
year = {2020},
doi = {10.21136/AM.2020.0373-19},
mrnumber = {4191365},
zbl = {07285953},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0373-19/}
}
TY - JOUR AU - de la Puente, María Jesús AU - Clavería, Pedro Luis TI - Isocanted alcoved polytopes JO - Applications of Mathematics PY - 2020 SP - 703 EP - 726 VL - 65 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0373-19/ DO - 10.21136/AM.2020.0373-19 LA - en ID - 10_21136_AM_2020_0373_19 ER -
%0 Journal Article %A de la Puente, María Jesús %A Clavería, Pedro Luis %T Isocanted alcoved polytopes %J Applications of Mathematics %D 2020 %P 703-726 %V 65 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0373-19/ %R 10.21136/AM.2020.0373-19 %G en %F 10_21136_AM_2020_0373_19
de la Puente, María Jesús; Clavería, Pedro Luis. Isocanted alcoved polytopes. Applications of Mathematics, Tome 65 (2020) no. 6, pp. 703-726. doi: 10.21136/AM.2020.0373-19
Cité par Sources :