Distance matrices perturbed by Laplacians
Applications of Mathematics, Tome 65 (2020) no. 5, pp. 599-607.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $T$ be a tree with $n$ vertices. To each edge of $T$ we assign a weight which is a positive definite matrix of some fixed order, say, $s$. Let $D_{ij}$ denote the sum of all the weights lying in the path connecting the vertices $i$ and $j$ of $T$. We now say that $D_{ij}$ is the distance between $i$ and $j$. Define $D:=[D_{ij}]$, where $D_{ii}$ is the $s \times s$ null matrix and for $i \neq j$, $D_{ij}$ is the distance between $i$ and $j$. Let $G$ be an arbitrary connected weighted graph with $n$ vertices, where each weight is a positive definite matrix of order $s$. If $i$ and $j$ are adjacent, then define $L_{ij}:=-W_{ij}^{-1}$, where $W_{ij}$ is the weight of the edge $(i,j)$. Define $L_{ii}:=\sum _{i \neq j,j=1}^{n}W_{ij}^{-1}$. The Laplacian of $G$ is now the $ns \times ns$ block matrix $L:=[L_{ij}]$. In this paper, we first note that $D^{-1}-L$ is always nonsingular and then we prove that $D$ and its perturbation $(D^{-1}-L)^{-1}$ have many interesting properties in common.
DOI : 10.21136/AM.2020.0362-19
Classification : 05C50, 15B48
Keywords: tree; Laplacian matrix; inertia; Haynsworth formula
@article{10_21136_AM_2020_0362_19,
     author = {Ramamurthy, Balaji and Bapat, Ravindra Bhalchandra and Goel, Shivani},
     title = {Distance matrices perturbed by {Laplacians}},
     journal = {Applications of Mathematics},
     pages = {599--607},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {2020},
     doi = {10.21136/AM.2020.0362-19},
     mrnumber = {4160783},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0362-19/}
}
TY  - JOUR
AU  - Ramamurthy, Balaji
AU  - Bapat, Ravindra Bhalchandra
AU  - Goel, Shivani
TI  - Distance matrices perturbed by Laplacians
JO  - Applications of Mathematics
PY  - 2020
SP  - 599
EP  - 607
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0362-19/
DO  - 10.21136/AM.2020.0362-19
LA  - en
ID  - 10_21136_AM_2020_0362_19
ER  - 
%0 Journal Article
%A Ramamurthy, Balaji
%A Bapat, Ravindra Bhalchandra
%A Goel, Shivani
%T Distance matrices perturbed by Laplacians
%J Applications of Mathematics
%D 2020
%P 599-607
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0362-19/
%R 10.21136/AM.2020.0362-19
%G en
%F 10_21136_AM_2020_0362_19
Ramamurthy, Balaji; Bapat, Ravindra Bhalchandra; Goel, Shivani. Distance matrices perturbed by Laplacians. Applications of Mathematics, Tome 65 (2020) no. 5, pp. 599-607. doi : 10.21136/AM.2020.0362-19. http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0362-19/

Cité par Sources :