Distance matrices perturbed by Laplacians
Applications of Mathematics, Tome 65 (2020) no. 5, pp. 599-607
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $T$ be a tree with $n$ vertices. To each edge of $T$ we assign a weight which is a positive definite matrix of some fixed order, say, $s$. Let $D_{ij}$ denote the sum of all the weights lying in the path connecting the vertices $i$ and $j$ of $T$. We now say that $D_{ij}$ is the distance between $i$ and $j$. Define $D:=[D_{ij}]$, where $D_{ii}$ is the $s \times s$ null matrix and for $i \neq j$, $D_{ij}$ is the distance between $i$ and $j$. Let $G$ be an arbitrary connected weighted graph with $n$ vertices, where each weight is a positive definite matrix of order $s$. If $i$ and $j$ are adjacent, then define $L_{ij}:=-W_{ij}^{-1}$, where $W_{ij}$ is the weight of the edge $(i,j)$. Define $L_{ii}:=\sum _{i \neq j,j=1}^{n}W_{ij}^{-1}$. The Laplacian of $G$ is now the $ns \times ns$ block matrix $L:=[L_{ij}]$. In this paper, we first note that $D^{-1}-L$ is always nonsingular and then we prove that $D$ and its perturbation $(D^{-1}-L)^{-1}$ have many interesting properties in common.
DOI :
10.21136/AM.2020.0362-19
Classification :
05C50, 15B48
Keywords: tree; Laplacian matrix; inertia; Haynsworth formula
Keywords: tree; Laplacian matrix; inertia; Haynsworth formula
@article{10_21136_AM_2020_0362_19,
author = {Ramamurthy, Balaji and Bapat, Ravindra Bhalchandra and Goel, Shivani},
title = {Distance matrices perturbed by {Laplacians}},
journal = {Applications of Mathematics},
pages = {599--607},
publisher = {mathdoc},
volume = {65},
number = {5},
year = {2020},
doi = {10.21136/AM.2020.0362-19},
mrnumber = {4160783},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0362-19/}
}
TY - JOUR AU - Ramamurthy, Balaji AU - Bapat, Ravindra Bhalchandra AU - Goel, Shivani TI - Distance matrices perturbed by Laplacians JO - Applications of Mathematics PY - 2020 SP - 599 EP - 607 VL - 65 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0362-19/ DO - 10.21136/AM.2020.0362-19 LA - en ID - 10_21136_AM_2020_0362_19 ER -
%0 Journal Article %A Ramamurthy, Balaji %A Bapat, Ravindra Bhalchandra %A Goel, Shivani %T Distance matrices perturbed by Laplacians %J Applications of Mathematics %D 2020 %P 599-607 %V 65 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0362-19/ %R 10.21136/AM.2020.0362-19 %G en %F 10_21136_AM_2020_0362_19
Ramamurthy, Balaji; Bapat, Ravindra Bhalchandra; Goel, Shivani. Distance matrices perturbed by Laplacians. Applications of Mathematics, Tome 65 (2020) no. 5, pp. 599-607. doi: 10.21136/AM.2020.0362-19
Cité par Sources :