A recovery-based a posteriori error estimator for the generalized Stokes problem
Applications of Mathematics, Tome 65 (2020) no. 1, pp. 23-41.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A recovery-based a posteriori error estimator for the generalized Stokes problem is established based on the stabilized $P_1-P_0$ (linear/constant) finite element method. The reliability and efficiency of the error estimator are shown. Through theoretical analysis and numerical tests, it is revealed that the estimator is useful and efficient for the generalized Stokes problem.
DOI : 10.21136/AM.2020.0319-18
Classification : 65N30, 65N50
Keywords: generalized Stokes problem; recovery-based error estimator; adaptive method; finite element method
@article{10_21136_AM_2020_0319_18,
     author = {Huang, Pengzhan and Zhang, Qiuyu},
     title = {A recovery-based a posteriori error estimator for the generalized {Stokes} problem},
     journal = {Applications of Mathematics},
     pages = {23--41},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2020},
     doi = {10.21136/AM.2020.0319-18},
     mrnumber = {4064588},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0319-18/}
}
TY  - JOUR
AU  - Huang, Pengzhan
AU  - Zhang, Qiuyu
TI  - A recovery-based a posteriori error estimator for the generalized Stokes problem
JO  - Applications of Mathematics
PY  - 2020
SP  - 23
EP  - 41
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0319-18/
DO  - 10.21136/AM.2020.0319-18
LA  - en
ID  - 10_21136_AM_2020_0319_18
ER  - 
%0 Journal Article
%A Huang, Pengzhan
%A Zhang, Qiuyu
%T A recovery-based a posteriori error estimator for the generalized Stokes problem
%J Applications of Mathematics
%D 2020
%P 23-41
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0319-18/
%R 10.21136/AM.2020.0319-18
%G en
%F 10_21136_AM_2020_0319_18
Huang, Pengzhan; Zhang, Qiuyu. A recovery-based a posteriori error estimator for the generalized Stokes problem. Applications of Mathematics, Tome 65 (2020) no. 1, pp. 23-41. doi : 10.21136/AM.2020.0319-18. http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0319-18/

Cité par Sources :