Regularity criterion for a nonhomogeneous incompressible Ginzburg-Landau-Navier-Stokes system
Applications of Mathematics, Tome 66 (2021) no. 3, pp. 373-382.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove a regularity criterion for a nonhomogeneous incompressible Ginzburg-Landau-Navier-Stokes system with the Coulomb gauge in $\mathbb R^3$. It is proved that if the velocity field in the Besov space satisfies some integral property, then the solution keeps its smoothness.
DOI : 10.21136/AM.2020.0298-19
Classification : 35Q30, 35Q56, 76D03, 82D55
Keywords: Ginzburg-Landau; Navier-Stokes; regularity criterion
@article{10_21136_AM_2020_0298_19,
     author = {Pan, Nana and Fan, Jishan and Zhou, Yong},
     title = {Regularity criterion for a nonhomogeneous incompressible {Ginzburg-Landau-Navier-Stokes} system},
     journal = {Applications of Mathematics},
     pages = {373--382},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {2021},
     doi = {10.21136/AM.2020.0298-19},
     mrnumber = {4263156},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0298-19/}
}
TY  - JOUR
AU  - Pan, Nana
AU  - Fan, Jishan
AU  - Zhou, Yong
TI  - Regularity criterion for a nonhomogeneous incompressible Ginzburg-Landau-Navier-Stokes system
JO  - Applications of Mathematics
PY  - 2021
SP  - 373
EP  - 382
VL  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0298-19/
DO  - 10.21136/AM.2020.0298-19
LA  - en
ID  - 10_21136_AM_2020_0298_19
ER  - 
%0 Journal Article
%A Pan, Nana
%A Fan, Jishan
%A Zhou, Yong
%T Regularity criterion for a nonhomogeneous incompressible Ginzburg-Landau-Navier-Stokes system
%J Applications of Mathematics
%D 2021
%P 373-382
%V 66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0298-19/
%R 10.21136/AM.2020.0298-19
%G en
%F 10_21136_AM_2020_0298_19
Pan, Nana; Fan, Jishan; Zhou, Yong. Regularity criterion for a nonhomogeneous incompressible Ginzburg-Landau-Navier-Stokes system. Applications of Mathematics, Tome 66 (2021) no. 3, pp. 373-382. doi : 10.21136/AM.2020.0298-19. http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0298-19/

Cité par Sources :