A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three
Applications of Mathematics, Tome 66 (2021) no. 1, pp. 43-55
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This paper proves a Serrin's type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density $\rho $ and velocity field $u$ satisfy $\|\nabla \rho \|_{L^{\infty }(0,T; W^{1,q})} + \| u\|_{L^s(0,T; L^r_{\omega })} \infty $ for some $q>3$ and any $(r,s)$ satisfying $2/s+3/r \le 1$, $3 $ then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over $[0,T]$. Here $L^r_{\omega }$ denotes the weak $L^r$ space.
DOI :
10.21136/AM.2020.0228-19
Classification :
35D35, 35Q35, 76D45
Keywords: Navier-Stokes-Korteweg equations; capillary fluid; blow-up criterion; vacuum; strong solutions
Keywords: Navier-Stokes-Korteweg equations; capillary fluid; blow-up criterion; vacuum; strong solutions
@article{10_21136_AM_2020_0228_19,
author = {Li, Huanyuan},
title = {A blow-up criterion for the strong solutions to the nonhomogeneous {Navier-Stokes-Korteweg} equations in dimension three},
journal = {Applications of Mathematics},
pages = {43--55},
publisher = {mathdoc},
volume = {66},
number = {1},
year = {2021},
doi = {10.21136/AM.2020.0228-19},
mrnumber = {4218601},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0228-19/}
}
TY - JOUR AU - Li, Huanyuan TI - A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three JO - Applications of Mathematics PY - 2021 SP - 43 EP - 55 VL - 66 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0228-19/ DO - 10.21136/AM.2020.0228-19 LA - en ID - 10_21136_AM_2020_0228_19 ER -
%0 Journal Article %A Li, Huanyuan %T A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three %J Applications of Mathematics %D 2021 %P 43-55 %V 66 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0228-19/ %R 10.21136/AM.2020.0228-19 %G en %F 10_21136_AM_2020_0228_19
Li, Huanyuan. A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three. Applications of Mathematics, Tome 66 (2021) no. 1, pp. 43-55. doi: 10.21136/AM.2020.0228-19
Cité par Sources :