A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three
Applications of Mathematics, Tome 66 (2021) no. 1, pp. 43-55.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper proves a Serrin's type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density $\rho $ and velocity field $u$ satisfy $\|\nabla \rho \|_{L^{\infty }(0,T; W^{1,q})} + \| u\|_{L^s(0,T; L^r_{\omega })} \infty $ for some $q>3$ and any $(r,s)$ satisfying $2/s+3/r \le 1$, $3 $ then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over $[0,T]$. Here $L^r_{\omega }$ denotes the weak $L^r$ space.
DOI : 10.21136/AM.2020.0228-19
Classification : 35D35, 35Q35, 76D45
Keywords: Navier-Stokes-Korteweg equations; capillary fluid; blow-up criterion; vacuum; strong solutions
@article{10_21136_AM_2020_0228_19,
     author = {Li, Huanyuan},
     title = {A blow-up criterion for the strong solutions to the nonhomogeneous {Navier-Stokes-Korteweg} equations in dimension three},
     journal = {Applications of Mathematics},
     pages = {43--55},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2021},
     doi = {10.21136/AM.2020.0228-19},
     mrnumber = {4218601},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0228-19/}
}
TY  - JOUR
AU  - Li, Huanyuan
TI  - A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three
JO  - Applications of Mathematics
PY  - 2021
SP  - 43
EP  - 55
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0228-19/
DO  - 10.21136/AM.2020.0228-19
LA  - en
ID  - 10_21136_AM_2020_0228_19
ER  - 
%0 Journal Article
%A Li, Huanyuan
%T A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three
%J Applications of Mathematics
%D 2021
%P 43-55
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0228-19/
%R 10.21136/AM.2020.0228-19
%G en
%F 10_21136_AM_2020_0228_19
Li, Huanyuan. A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three. Applications of Mathematics, Tome 66 (2021) no. 1, pp. 43-55. doi : 10.21136/AM.2020.0228-19. http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0228-19/

Cité par Sources :