On polynomial robustness of flux reconstructions
Applications of Mathematics, Tome 65 (2020) no. 2, pp. 153-172.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We deal with the numerical solution of elliptic not necessarily self-adjoint problems. We derive a posteriori upper bound based on the flux reconstruction that can be directly and cheaply evaluated from the original fluxes and we show for one-dimensional problems that local efficiency of the resulting a posteriori error estimators depends on $p^{1/2}$ only, where $p$ is the discretization polynomial degree. The theoretical results are verified by numerical experiments.
DOI : 10.21136/AM.2020.0152-19
Classification : 65N15, 65N30
Keywords: a posteriori error estimate; $p$-robustness; elliptic problem
@article{10_21136_AM_2020_0152_19,
     author = {Vlas\'ak, Miloslav},
     title = {On polynomial robustness of flux reconstructions},
     journal = {Applications of Mathematics},
     pages = {153--172},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2020},
     doi = {10.21136/AM.2020.0152-19},
     mrnumber = {4083462},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0152-19/}
}
TY  - JOUR
AU  - Vlasák, Miloslav
TI  - On polynomial robustness of flux reconstructions
JO  - Applications of Mathematics
PY  - 2020
SP  - 153
EP  - 172
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0152-19/
DO  - 10.21136/AM.2020.0152-19
LA  - en
ID  - 10_21136_AM_2020_0152_19
ER  - 
%0 Journal Article
%A Vlasák, Miloslav
%T On polynomial robustness of flux reconstructions
%J Applications of Mathematics
%D 2020
%P 153-172
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0152-19/
%R 10.21136/AM.2020.0152-19
%G en
%F 10_21136_AM_2020_0152_19
Vlasák, Miloslav. On polynomial robustness of flux reconstructions. Applications of Mathematics, Tome 65 (2020) no. 2, pp. 153-172. doi : 10.21136/AM.2020.0152-19. http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0152-19/

Cité par Sources :