The generalized finite volume SUSHI scheme for the discretization of the peaceman model
Applications of Mathematics, Tome 66 (2021) no. 1, pp. 115-143
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We demonstrate some a priori estimates of a scheme using stabilization and hybrid interfaces applying to partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration of invading fluid. The anisotropic diffusion operators in both equations require special care while discretizing by a finite volume method SUSHI. Later, we present some numerical experiments.
We demonstrate some a priori estimates of a scheme using stabilization and hybrid interfaces applying to partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration of invading fluid. The anisotropic diffusion operators in both equations require special care while discretizing by a finite volume method SUSHI. Later, we present some numerical experiments.
DOI :
10.21136/AM.2020.0122-19
Classification :
65M08, 65N30, 76M10, 76M12, 76R99, 76S05
Keywords: porous medium; nonconforming grid; finite volume scheme; a priori estimate; miscible fluid flow
Keywords: porous medium; nonconforming grid; finite volume scheme; a priori estimate; miscible fluid flow
@article{10_21136_AM_2020_0122_19,
author = {Mandari, Mohamed and Rhoudaf, Mohamed and Soualhi, Ouafa},
title = {The generalized finite volume {SUSHI} scheme for the discretization of the peaceman model},
journal = {Applications of Mathematics},
pages = {115--143},
year = {2021},
volume = {66},
number = {1},
doi = {10.21136/AM.2020.0122-19},
mrnumber = {4218605},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0122-19/}
}
TY - JOUR AU - Mandari, Mohamed AU - Rhoudaf, Mohamed AU - Soualhi, Ouafa TI - The generalized finite volume SUSHI scheme for the discretization of the peaceman model JO - Applications of Mathematics PY - 2021 SP - 115 EP - 143 VL - 66 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0122-19/ DO - 10.21136/AM.2020.0122-19 LA - en ID - 10_21136_AM_2020_0122_19 ER -
%0 Journal Article %A Mandari, Mohamed %A Rhoudaf, Mohamed %A Soualhi, Ouafa %T The generalized finite volume SUSHI scheme for the discretization of the peaceman model %J Applications of Mathematics %D 2021 %P 115-143 %V 66 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0122-19/ %R 10.21136/AM.2020.0122-19 %G en %F 10_21136_AM_2020_0122_19
Mandari, Mohamed; Rhoudaf, Mohamed; Soualhi, Ouafa. The generalized finite volume SUSHI scheme for the discretization of the peaceman model. Applications of Mathematics, Tome 66 (2021) no. 1, pp. 115-143. doi: 10.21136/AM.2020.0122-19
Cité par Sources :