Estimation of vibration frequencies of linear elastic membranes
Applications of Mathematics, Tome 63 (2018) no. 1, pp. 37-53.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The free motion of a thin elastic linear membrane is described, in a simplyfied model, by a second order linear homogeneous hyperbolic system of partial differential equations whose spatial part is the Laplace Beltrami operator acting on a Riemannian 2-dimensional manifold with boundary. We adapt the estimates of the spectrum of the Laplacian obtained in the last years by several authors for compact closed Riemannian manifolds. To make so, we use the standard technique of the doubled manifold to transform a Riemannian manifold with nonempty boundary $(M, \partial M, g)$ to a compact Riemannian manifold $(M\sharp M, \widetilde g)$ without boundary. An easy numerical investigation on a concrete semi-ellipsoidic membrane with clamped boundary tests the sharpness of the method.
DOI : 10.21136/AM.2018.0316-16
Classification : 53C20, 53C21, 58C40, 74K15
Keywords: membrane; Laplacian; estimation of frequencies
@article{10_21136_AM_2018_0316_16,
     author = {Sabatini, Luca},
     title = {Estimation of vibration frequencies of linear elastic membranes},
     journal = {Applications of Mathematics},
     pages = {37--53},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {2018},
     doi = {10.21136/AM.2018.0316-16},
     mrnumber = {3763981},
     zbl = {06861541},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0316-16/}
}
TY  - JOUR
AU  - Sabatini, Luca
TI  - Estimation of vibration frequencies of linear elastic membranes
JO  - Applications of Mathematics
PY  - 2018
SP  - 37
EP  - 53
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0316-16/
DO  - 10.21136/AM.2018.0316-16
LA  - en
ID  - 10_21136_AM_2018_0316_16
ER  - 
%0 Journal Article
%A Sabatini, Luca
%T Estimation of vibration frequencies of linear elastic membranes
%J Applications of Mathematics
%D 2018
%P 37-53
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0316-16/
%R 10.21136/AM.2018.0316-16
%G en
%F 10_21136_AM_2018_0316_16
Sabatini, Luca. Estimation of vibration frequencies of linear elastic membranes. Applications of Mathematics, Tome 63 (2018) no. 1, pp. 37-53. doi : 10.21136/AM.2018.0316-16. http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0316-16/

Cité par Sources :