Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_AM_2018_0314_17, author = {Tezaur, Radek and Van\v{e}k, Petr}, title = {Improved convergence estimate for a multiply polynomially smoothed two-level method with an aggressive coarsening}, journal = {Applications of Mathematics}, pages = {629--641}, publisher = {mathdoc}, volume = {63}, number = {6}, year = {2018}, doi = {10.21136/AM.2018.0314-17}, mrnumber = {3893003}, zbl = {07031680}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0314-17/} }
TY - JOUR AU - Tezaur, Radek AU - Vaněk, Petr TI - Improved convergence estimate for a multiply polynomially smoothed two-level method with an aggressive coarsening JO - Applications of Mathematics PY - 2018 SP - 629 EP - 641 VL - 63 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0314-17/ DO - 10.21136/AM.2018.0314-17 LA - en ID - 10_21136_AM_2018_0314_17 ER -
%0 Journal Article %A Tezaur, Radek %A Vaněk, Petr %T Improved convergence estimate for a multiply polynomially smoothed two-level method with an aggressive coarsening %J Applications of Mathematics %D 2018 %P 629-641 %V 63 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0314-17/ %R 10.21136/AM.2018.0314-17 %G en %F 10_21136_AM_2018_0314_17
Tezaur, Radek; Vaněk, Petr. Improved convergence estimate for a multiply polynomially smoothed two-level method with an aggressive coarsening. Applications of Mathematics, Tome 63 (2018) no. 6, pp. 629-641. doi : 10.21136/AM.2018.0314-17. http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0314-17/
Cité par Sources :